Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS201: Data Structures and Discrete Mathematics I

Similar presentations


Presentation on theme: "CS201: Data Structures and Discrete Mathematics I"— Presentation transcript:

1 CS201: Data Structures and Discrete Mathematics I
Linked List, Stacks and Queues

2 Data Structure A construct that can be defined within a programming language to store a collection of data one may store some data in an array of integers, an array of objects, or an array of arrays 9/19/2018 CS 201

3 Abstract Data Type (ADT)
Definition: a collection of data together with a set of operations on that data specifications indicate what ADT operations do, but not how to implement them data structures are part of an ADT’s implementation Programmer can use an ADT without knowing its implementation. 9/19/2018 CS 201

4 Typical Operations on Data
Add data to a data collection Remove data from a data collection Ask questions about the data in a data collection. E.g., what is the value at a particular location. 9/19/2018 CS 201

5 Why ADT Hide the unnecessary details Help manage software complexity
Easier software maintenance Functionalities are less likely to change Localised rather than global changes 9/19/2018 CS 201

6 Illustration 9/19/2018 CS 201

7 Linked Lists

8 Lists List: a finite sequence of data items a1; a2; a3; : : : an
Lists are pervasive in computing e.g. class list, list of chars, list of events Typical operations: Creation Insert / remove an element Test for emptiness Find an element Current element / next / previous Find k-th element Print the entire list 9/19/2018 CS 201

9 Array-Based List Implementation
One simple implementation is to use java arrays A sequence of n-elements Maximum size must be anticipated a priori. Internal variables: Maximum size maxSize (m) Current size currSize (n) Current index current Array of elements listArray n currSize a1 a2 a3 an listArray unused 1 2 n-1 m current 9/19/2018 CS 201

10 Inserting Into an Array
While retrieval is very fast, insertion and deletion are very slow Insert has to shift upwards to create gap a1 a2 a7 a8 a4 a5 a6 a3 Step 1 : Shift upwards 8 Size arr Example : insert(3,it) Step 2 : Write into gap it Step 3 : Update Size 9 9/19/2018 CS 201

11 Coding class list { private int size private Object[] arr;
public void insert(int j, Object it) { // pre : 1<=j<=size+1 for (i=size; i>=j; i=i-1) { arr[i+1]=arr[i]; }; // Step 1: Create gap arr[j]=it; // Step 2: Write to gap size = size + 1; // Step 3: Update size } 9/19/2018 CS 201

12 Deleting from an Array Delete has to shift downwards to close gap of deleted item Step 1 : Close Gap 9 a1 a2 it a7 a8 size a5 a6 a3 arr a4 Example: delete(5) Step 2 : Update Size 8 Not part of list 9/19/2018 CS 201

13 Coding public void delete(int j) { // pre : 1<=j<=size
for (i=j+1; i<=size; i=i+1) { arr[i-i]=arr[i]; }; // Step1: Close gap size = size - 1; // Step 2: Update size } 9/19/2018 CS 201

14 Linked List Approach Main problem of array is deletion/insertion slow since it has to shift items in its contiguous memory Solution: linked list where items need not be contiguous with nodes of the form Sequence (list) of four items < a1,a2 ,a3 ,a4 > can be represented by: element next ai a1 a2 a3 a4 head represents null 9/19/2018 CS 201

15 Coding class ListNode { Object element; ListNode next;
public ListNode(Object o) { element = o; next = null; } public ListNode(Object o,ListNode n) next = n; } } 9/19/2018 CS 201

16 Add elementz to list The earlier sequence can be built by:
ListNode ptr4 = new ListNode(“a4”, null); ListNode ptr3 = new ListNode(“a3”, ptr4); ListNode ptr2 = new ListNode(“a2”, ptr3); ListNode head = new ListNode(“a1”, ptr2); ptr2 ptr3 ptr4 head a1 a2 a3 a4 9/19/2018 CS 201

17 Linked List ADT We can provide an ADT for linked-list.
This can help hide unnecessary internal details a1 a2 a3 a4 head LinkedList addHead() deleteHead() LinkedList() retrieve(Head) isEmpty() 9/19/2018 CS 201

18 Sample Sequence of four items < a1,a2 ,a3 ,a4 > can be built, as follows: LinkedList list = new LinkedList(); list.addHead(“a4”); list.addHead(“a3”); list.addHead(“a2”); list.addHead(“a1”); head list a1 a2 a3 a4 9/19/2018 CS 201

19 Coding class LinkedList { protected ListNode head ;
public LinkedList() {head = null; } public boolean isEmpty() {return (head == null); } public void addHead(Object o) {head = new ListNode(o,head); } public void deleteHead() throws ItemNotFound {if (head ==null) {throw new ItemNotFound(“DeleteHead fails”);} else head = head.next;} }; class ItemNotFound extends Exception { public ItemNotFound(String msg) {super(msg);} } 9/19/2018 CS 201

20 Linked List Iteration ADT
To support better access to our linked-list, we propose to build a linked-list iteration ADT advance first isLast insertNext(o) LinkedListItr deleteNext retrieve a1 a2 a3 a4 head current 9/19/2018 CS 201

21 Declaration data structure access or change current pointer
class LinkedListItr extends LinkedList{ private ListNode current; private boolean zeroflag; public LinkedListItr() {… } public void zeroth() { … } public void first() { … } public void advance() { … } public boolean isLast() { … } public boolean isInList() { … } public Object retrieve() { … } public void insertNext(Object o) { … } public void deleteNext() { … } } data structure access or change current pointer access or change nodes 9/19/2018 CS 201

22 Coding Zeroth Position (current == null) && (zeroflag==true) InList
public void zeroth() // set position prior to first element { current = null; zeroflag = true; } Why zeroflag? – To distinguish “zeroth position” from “beyond list position” Zeroth Position (current == null) && (zeroflag==true) InList (current != null) Beyond List (current == null) && (zeroflag==false) 9/19/2018 CS 201

23 More coding public void first() throws ItemNotFound
// set position to first element { current = head; zeroflag = false; if (current == null) {throw new ItemNotFound(“No first element”);}; } public void advance() // advance to next item {if (current != null) {current = current.next } else {if (zeroflag) {current = head; zeroflag = false;} else {} }; 9/19/2018 CS 201

24 More coding public boolean isLast() // check if it current is at the last node {if (current!=null) return (current.next == null); else return false; } public boolean isInList() // check if current is at some node (return (current != null); public Object retrieve() throws ItemNotFound // current object at current position { if (current!=null) { return current.element; } else { throw new ItemNotFound(“retrieve fails”); }; 9/19/2018 CS 201

25 Insertion ? temp head o current a1 a2 a3 a4
public void insertNext(Object o) throws ItemNotFound // insert after current position { ListNode temp; if (current!=null) {temp = new ListNode(o, current.next); current.next = temp;} else if (zeroflag) { head = new ListNode(o,head);} else {throw new ItemNotFound(“insert fails”);}; } ? temp o a1 a2 a3 a4 head current 9/19/2018 CS 201

26 Delete ? current head a1 a2 a3 a4
public void deleteNext() throws ItemNotFound // delete node after current position { if (current!=null) {if (current.next!=null) {current.next = current.next.next;} else {throw new ItemNotFound(“No Next Node to Delete”);}; } else if (zeroflag && head!=null) {head=head.next;} ? a1 a2 a3 a4 head current 9/19/2018 CS 201

27 Doubly Liked Lists Frequently, we need to traverse a sequence in BOTH directions efficiently Solution : Use doubly-linked list where each node has two pointers next forward traversal Doubly Linked List. x1 x4 x2 head x3 backward traversal prev 9/19/2018 CS 201

28 Circular Linked Lists May need to cycle through a list repeatedly, e.g. round robin system for a shared resource Solution : Have the last node point to the first node x1 x2 xn . . . Circular Linked List. head 9/19/2018 CS 201

29 Stacks

30 What is a Stack? A stack is a list with the restriction that insertions and deletions can be performed in only one position, namely, the end of the list, called the top. The operations: push (insert) and pop (delete) pop push(o) 3 Top 2 7 6 9/19/2018 CS 201

31 Stack ADT Interface We can use Java Interface to specify Stack ADT Interface interface Stack { boolean isEmpty(); // return true if empty void push(Object o); // insert o into stack void pop() throws Underflow; // remove most recent item void popAll(); // remove all items from stack Object top() throws Underflow; // retrieve most recent item Object topAndPop() throws Underflow; // return & remove most recent item } 9/19/2018 CS 201

32 Sample Operation s d top e c b a Stack s = makeStack(); s.push(“a”);
s.push(“b”); s.push(“c”); d=s.top(); s.pop(); s.push(“e”); s top d e c b a 9/19/2018 CS 201

33 Implementation by Linked Lists
Can use LinkedListItr as implementation of stack StackLL lst Top of Stack = Front of Linked-List LinkedListItr a1 a2 a3 a4 head current 9/19/2018 CS 201

34 Code Class StackLL implements Stack { private LinkedListItr lst;
public StackLL() { lst = new LinkedListItr(); } public Stack makeStack() { return new StackLL(); } public boolean isEmpty() // return true if empty { return lst.isEmpty(); }; public void push(Object o) // add o into the stack { lst.addHead(o); } public void pop() throws Underflow // remove most recent item { try {lst.deleteHead();} catch (ItemNotFound e) {throw new Underflow(“pop fails - empty stack”)}; } 9/19/2018 CS 201

35 More code public Object top() throws Underflow; // retrieve most recent item { try { lst.first(); return lst.retrieve(); } catch (ItemNotFound e) {throw new Underflow(“top fails - empty stack”);}; } public Object topAndPop() throws Underflow; // return & remove most recent item Object p=lst.retrieve(); lst.deleteHead(); return p; {throw new Underflow(“topAndPop fails - empty stack”);}; 9/19/2018 CS 201

36 Implementation by Array
Can use Array with a top index pointer as an implementation of stack top StackAr arr 1 7 8 9 2 3 4 5 6 A B C D E F G 9/19/2018 CS 201

37 Code class StackAr implements Stack { private Object [] arr;
private int top; private int maxSize; private final int initSize = 1000; private final int increment = 1000; public StackAr() { arr = new Object[initSize]; top = -1; maxSize=initSize } public Stack makeStack() { return new StackAr(); } public boolean isEmpty() { return (top<0); } private boolean isFull() { return (top>=maxSize); } 9/19/2018 CS 201

38 More code public void push(Object o) // insert o { top++;
if (this.isFull()) this.enlargeArr() ; arr[top]=o; } private void enlargeArr() // enlarge the array {int newSize = maxSize+increment; Object [] barr = new Object[newSize]; for (int j=0;j<maxSize;j++) {barr[j]=arr[j];}; maxSize = newSize; arr = barr; } 9/19/2018 CS 201

39 More code public void pop() throws Underflow
{ if (!this.isEmpty()) {top--;} else {throw new Underflow(“pop fails - empty stack”);}; } public Object top() throws Underflow { if (!this.isEmpty()) {return arr[top];} else {throw new Underflow(“top fails - empty stack”);}; public Object topAndPop() throws Underflow { if (!this.isEmpty()) { Object t = arr[top]; top--; return t; }; else {throw new Underflow(“top&pop fails - empty stack”);}; 9/19/2018 CS 201

40 Applications Many application areas use stacks: line editing
bracket matching postfix calculation function call stack 9/19/2018 CS 201

41 Line Editing A line editor would place characters read into a buffer but may use a backspace symbol (denoted by ) to do error correction Refined Task read in a line correct the errors via backspace print the corrected line in reverse Input : Corrected Input : Reversed Output : abc_defgh2klpqrwxyz abc_defg2klpwxyz zyxwplk2gfed_cba 9/19/2018 CS 201

42 The Procedure Initialize a new stack For each character read:
if it is a backspace, pop out last char entered if not a backspace, push the char into stack To print in reverse, pop out each char for output Stack z h r Input : fghryz Corrected Input : Reversed Output : g y fyz f zyf 9/19/2018 CS 201

43 Bracket Matching Problem
Ensures that pairs of brackets are properly matched An Example: {a,(b+f[4])*3,d+f[5]} Bad Examples: (..)..) // too many closing brackets (..(..) // too many open brackets [..(..]..) // mismatched brackets 9/19/2018 CS 201

44 Informal Procedure Initialize the stack to empty For every char read
if open bracket then push onto stack if close bracket, then return & remove most recent item from the stack if doesn’t match then flag error if non-bracket, skip the char read Stack [ ] Example {a,(b+f[4])*3,d+f[5]} ( [ ] ) { } 9/19/2018 CS 201

45 Postfix Calculator Computation of arithmetic expressions can be efficiently carried out in Postfix notation with the help of a stack. Infix arg1 op arg2 Prefix - op arg1 arg2 Postfix - arg1 arg2 op (2*3)+4 2*(3+4) * 2*3+4 infix 2 3 * 4 + postfix 9/19/2018 CS 201

46 Informal Procedure Stack Initialise stack For each item read.
If it is an operand, push on the stack If it is an operator, pop arguments from stack; perform operation; push result onto the stack Stack Expr 2 3 4 + * s.push(2) s.push(3) s.push(4) arg2=s.topAndPop() arg1=s.topAndPop() s.push(arg1+arg2) 4 3+4=7 3 arg2=s.topAndPop() arg1=s.topAndPop() s.push(arg1*arg2) 2*7=14 2 9/19/2018 CS 201

47 Summary The ADT stack operations have a last-in, first-out (LIFO) behavior Stack has many applications algorithms that operate on algebraic expressions a strong relationship between recursion and stacks exists Stack can be implemented by arrays and linked lists 9/19/2018 CS 201

48 Queues

49 What is a Queue? Like stacks, queues are lists. With a queue, however, insertion is done at one end whereas deletion is done at the other end. Queues implement the FIFO (first-in first-out) policy. E.g., a printer/job queue! Two basic operations of queues: dequeue: remove an element from front enqueue: add an element at the back dequeue enqueue 9/19/2018 CS 201

50 Queue ADT Queues implement the FIFO (first-in first-out) policy
An example is the printer/job queue! enqueue(o) dequeue() isEmpty() getFront() createQueue() 9/19/2018 CS 201

51 Sample Operation q front back d a b c e Queue q = createQueue();
q.enqueue(“a”); q.enqueue(“b”); q.enqueue(“c”); d=q.getFront(); q.dequeue(); q.enqueue(“e”); q front back d a b c e 9/19/2018 CS 201

52 Java Interface We can also use Java Interface to specify Queue ADT Interface. This provides a more abstract mechanism to support simultaneous implementations interface Queue { void enqueue(Object o) // insert o to back of Q void dequeue() throws Underflow; // remove oldest item Object getFront() throws Underflow; // retrieve oldest item boolean isEmpty(); // checks if Q is empty } 9/19/2018 CS 201

53 Implementation of Queue (Linked List)
Can use LinkedListItr as underlying implementation of Queues Queue lst LinkedListItr addTail a1 a2 a3 a4 head current tail 9/19/2018 CS 201

54 Code class QueueLL implements Queue { private LinkedListItr lst;
public QueueLL() { lst = new LinkedListItr(); } public static Queue makeQueue() // return a new empty queue { return new QueueLL(); } public void enqueue(Object o) // add o to back of queue { lst.addTail(o); } public void dequeue() throws Underflow // remove oldest item { try {lst.deleteHead(); catch (ItemNotFound e) {throw new Underflow(“dequeue fails - empty q”;}; } 9/19/2018 CS 201

55 More code public Object getFront() throws Underflow; // retrieve oldest item { try { lst.first(); return lst.retrieve(); } catch (ItemNotFound e) {throw new Underflow(“getFront fails - empty queue”);}; } public boolean isEmpty() // return true if empty { return lst.isEmpty(); } 9/19/2018 CS 201

56 Implementation of Queue (Array)
Can use Array with front and back pointers as implementation of queue Queue arr 1 7 8 9 2 3 4 5 6 A B C D E F G front back 9/19/2018 CS 201

57 Circular Array A B C D E F G front back front back A B C D E F G
To implement queue, it is best to view arrays as circular structure 1 7 8 9 2 3 4 5 6 A B C D E F G front back front back A B C D E F G 1 7 8 9 2 3 4 5 6 Circular view of arrays. 9/19/2018 CS 201

58 How to Advance Both front & back pointers should make advancement until they reach end of the array. Then, they should re-point to beginning of the array front = adv(front); back = adv(back); public static int adv(int p) { return ((p+1) % maxsize); } Alternatively, use modular arithmetic: mod operator public static int adv(int p) { int r = p+1; if (r<maxsize) return r; else return 0; } upper bound of the array 9/19/2018 CS 201

59 Sample q F=front B=back F B a e b c d F F F B B B B B
Queue q = QueueAR.makeQueue(); q.enqueue(“a”); q.enqueue(“b”); q.enqueue(“c”); q.dequeue(); q.enqueue(“d”); q.enqueue(“e”); q F=front B=back F B a e b c d F F F B B B B B 9/19/2018 CS 201

60 Checking for Full/Empty State
What does (F==B) denote? c d e B F f Queue Full State F B Queue Empty State size size 4 c d e B F Alternative - Leave a Deliberate Gap! No need for size field. Full Case : (adv(B)==F) 9/19/2018 CS 201

61 Code class QueueAr implements Queue { private Object [] arr;
private int front,back; private int maxSize; private final int initSize = 1000; private final int increment = 1000; public QueueAr() {arr = new Object[initSize]; front = 0; back=0; } public static Queue makeQueue() {return new QueueAr(); } public boolean isEmpty() // check if queue is empty { return (front==back); } private boolean isFull() // check if queue overflows { return (adv(back)==front); } } 9/19/2018 CS 201

62 More code public void enqueue(Object o) // add o to back of queue
{ if (this.isFull()) this.enlarge(); arr[back]=o; back=adv(back); } private void enlargeArr() // enlarge the array {int newSize = maxSize+increment; Object [] barr = new Object[newSize]; for (int j=0,k=front;j<=maxSize;j++,k=adv(k)) {barr[j]=arr[k];}; front=0; back=maxSize-1; maxSize = newSize; arr = barr; } 9/19/2018 CS 201

63 More code public void dequeue() throws Underflow { if this.isEmpty()
{throw new Underflow(“dequeue fails - empty q”);} else front=adv(front); } public Object getFront() throws Underflow {throw new Underflow(“getFront fails - empty q”);} else return arr[front]; 9/19/2018 CS 201

64 Summary The definition of the queue operations gives the ADT queue first-in, first-out (FIFO) behavior The queue can be implemented by linked lists or by arrays There are many applications Printer queues, Telecommunication queues, Simulations, Etc. 9/19/2018 CS 201


Download ppt "CS201: Data Structures and Discrete Mathematics I"

Similar presentations


Ads by Google