Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 12 Molecular Genetics

Similar presentations


Presentation on theme: "Chapter 12 Molecular Genetics"— Presentation transcript:

1 Chapter 12 Molecular Genetics
Section 1: DNA: The Genetic Material Section 2: Replication of DNA Section 3: DNA, RNA, and Protein Section 4: Gene Regulation and Mutation

2 Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material Griffith Performed the first major experiment that led to the discovery of DNA as the genetic material

3 Concluded that when the S cells were killed, DNA was released
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material Avery Identified the molecule that transformed the R strain of bacteria into the S strain Concluded that when the S cells were killed, DNA was released R bacteria incorporated this DNA into their cells and changed into S cells.

4 Used radioactive labeling to trace the DNA and protein
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material Hershey and Chase Used radioactive labeling to trace the DNA and protein Concluded that the viral DNA was injected into the cell and provided the genetic information needed to produce new viruses

5 Chapter 12 Molecular Genetics

6 12.1 DNA: The Genetic Material
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material DNA Structure Nucleotides Consist of a five-carbon sugar, a phosphate group, and a nitrogenous base

7 Chapter 12 Molecular Genetics

8 Chargaff’s rule: C = G and T = A
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material Chargaff Chargaff’s rule: C = G and T = A

9 X-ray diffraction data helped solve the structure of DNA
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material X-ray Diffraction X-ray diffraction data helped solve the structure of DNA Indicated that DNA was a double helix

10 two outside strands consist of alternating deoxyribose and phosphate
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material Watson and Crick Built a model of the double helix that conformed to the others’ research two outside strands consist of alternating deoxyribose and phosphate cytosine and guanine bases pair to each other by three hydrogen bonds thymine and adenine bases pair to each other by two hydrogen bonds

11 DNA often is compared to a twisted ladder.
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material DNA Structure DNA often is compared to a twisted ladder. Rails of the ladder are represented by the alternating deoxyribose and phosphate. The pairs of bases (cytosine–guanine or thymine–adenine) form the steps.

12 12.1 DNA: The Genetic Material
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material Orientation On the top rail, the strand is said to be oriented 5′ to 3′. The strand on the bottom runs in the opposite direction and is oriented 3′ to 5′.

13 12.1 DNA: The Genetic Material
Chapter 12 Molecular Genetics 12.1 DNA: The Genetic Material Chromosome Structure DNA coils around histones to form nucleosomes, which coil to form chromatin fibers. The chromatin fibers supercoil to form chromosomes that are visible in the metaphase stage of mitosis.

14 Semiconservative Replication
Chapter 12 Molecular Genetics 12.2 Replication of DNA Semiconservative Replication Parental strands of DNA separate, serve as templates, and produce DNA molecules that have one strand of parental DNA and one strand of new DNA.

15 Chapter 12 Molecular Genetics 12.2 Replication of DNA Unwinding DNA helicase, an enzyme, is responsible for unwinding and unzipping the double helix. RNA primase adds a short segment of RNA, called an RNA primer, on each DNA strand.

16 Chapter 12 Molecular Genetics 12.2 Replication of DNA Base pairing DNA polymerase continues adding appropriate nucleotides to the chain by adding to the 3′ end of the new DNA strand.

17 Chapter 12 Molecular Genetics

18 Chapter 12 Molecular Genetics 12.2 Replication of DNA One strand is called the leading strand and is elongated as the DNA unwinds. The other strand of DNA, called the lagging strand, elongates away from the replication fork. The lagging strand is synthesized discontinuously into small segments, called Okazaki fragments.

19 DNA ligase links the two sections.
Chapter 12 Molecular Genetics 12.2 Replication of DNA Joining DNA polymerase removes the RNA primer and fills in the place with DNA nucleotides. DNA ligase links the two sections.

20 Comparing DNA Replication in Eukaryotes and Prokaryotes
Chapter 12 Molecular Genetics 12.2 Replication of DNA Comparing DNA Replication in Eukaryotes and Prokaryotes Eukaryotic DNA unwinds in multiple areas as DNA is replicated. In prokaryotes, the circular DNA strand is opened at one origin of replication.

21 Contains the sugar ribose and the base uracil
Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein Central Dogma RNA Contains the sugar ribose and the base uracil Usually is single stranded

22 Associates with proteins to form ribosomes in the cytoplasm
Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein Messenger RNA (mRNA) Long strands of RNA nucleotides that are formed complementary to one strand of DNA Ribosomal RNA (rRNA) Associates with proteins to form ribosomes in the cytoplasm Transfer RNA (tRNA) Smaller segments of RNA nucleotides that transport amino acids to the ribosome

23 Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein

24 Chapter 12 Molecular Genetics

25 DNA is unzipped in the nucleus and RNA
Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein Transcription Through transcription, the DNA code is transferred to mRNA in the nucleus. DNA is unzipped in the nucleus and RNA polymerase binds to a specific section where an mRNA will be synthesized.

26 Chapter 12 Molecular Genetics

27 Intervening sequences are called introns.
Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein RNA Processing The code on the DNA is interrupted periodically by sequences that are not in the final mRNA. Intervening sequences are called introns. Remaining pieces of DNA that serve as the coding sequences are called exons. DNA and Genes

28 The three-base code in DNA or mRNA is called a codon.
Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein The Code Experiments during the 1960s demonstrated that the DNA code was a three-base code. The three-base code in DNA or mRNA is called a codon.

29 Each anticodon is complementary to a codon on the mRNA.
Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein Translation In translation, tRNA molecules act as the interpreters of the mRNA codon sequence. At the middle of the folded strand, there is a three-base coding sequence called the anticodon. Each anticodon is complementary to a codon on the mRNA.

30 Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein

31 Chapter 12 Molecular Genetics

32 Chapter 12 Molecular Genetics 12.3 DNA, RNA, and Protein One Gene—One Enzyme The Beadle and Tatum experiment showed that one gene codes for one enzyme. We now know that one gene codes for one polypeptide.

33 Prokaryote Gene Regulation
Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation Prokaryote Gene Regulation Ability of an organism to control which genes are transcribed in response to the environment An operon is a section of DNA that contains the genes for the proteins needed for a specific metabolic pathway. Operator Promoter Regulatory gene Genes coding for proteins

34 The Trp Operon 12.4 Gene Regulation and Mutation Chapter 12
Molecular Genetics 12.4 Gene Regulation and Mutation The Trp Operon

35 The Lac Operon 12.4 Gene Regulation and Mutation Chapter 12
Molecular Genetics 12.4 Gene Regulation and Mutation The Lac Operon Lac-Trp Operon

36 Chapter 12 Molecular Genetics

37 Eukaryote Gene Regulation
Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation Eukaryote Gene Regulation Controlling transcription Transcription factors ensure that a gene is used at the right time and that proteins are made in the right amounts The complex structure of eukaryotic DNA also regulates transcription.

38 Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation Hox Genes Hox genes are responsible for the general body pattern of most animals.

39 RNA interference can stop the mRNA from translating its message.
Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation RNA Interference RNA interference can stop the mRNA from translating its message.

40 A permanent change that occurs in a cell’s DNA is called a mutation.
Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation Mutations A permanent change that occurs in a cell’s DNA is called a mutation. Types of mutations Point mutation Insertion Deletion

41 12.4 Gene Regulation and Mutation
Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation

42 Chapter 12 Molecular Genetics

43 Protein Folding and Stability
Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation Protein Folding and Stability Substitutions also can lead to genetic disorders. Can change both the folding and stability of the protein

44 Can occur spontaneously
Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation Causes of Mutation Can occur spontaneously Chemicals and radiation also can damage DNA. High-energy forms of radiation, such as X rays and gamma rays, are highly mutagenic.

45 Body-cell v. Sex-cell Mutation
Chapter 12 Molecular Genetics 12.4 Gene Regulation and Mutation Body-cell v. Sex-cell Mutation Somatic cell mutations are not passed on to the next generation. Mutations that occur in sex cells are passed on to the organism’s offspring and will be present in every cell of the offspring.


Download ppt "Chapter 12 Molecular Genetics"

Similar presentations


Ads by Google