Presentation is loading. Please wait.

Presentation is loading. Please wait.

EET103 TEKNOLOGI ELEKTRIK

Similar presentations


Presentation on theme: "EET103 TEKNOLOGI ELEKTRIK"— Presentation transcript:

1 EET103 TEKNOLOGI ELEKTRIK
PN SAMILA MAT ZALI PN HAZIAH ABDUL HAMID

2 COURSE STRUCTURE Final Exam : 50% Test : 10% Practical:
- Laboratory : 30% - Lab Test : 10% TOTAL :100%

3 COURSE SYLLIBUS Konsep asas elektrik
Konsep asas sistem elektrik, struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa, penebat, konduktor dan semikonduktor, elemen aktif dan pasif, hukum Ohm dan Kirchhoff, kaedah analisis litar: Thevenin dan Norton, Kemagnetan dan keelektromagnetan Kemagnetan: magnet, medan magnet dan fluks, domain magnet, magnet kekal, magnet sementara. Keelektromagetan: medan magnet dan arus elektrik, daya gerak magnet dan ketumpatan, keengganan litar magnet, histerisis, daya elektromagnet, kilas dalam gegelung. Aruhan elektromagnet: voltan aruhan dalam gegelung, hukum lenz dan aturan tangan kanan flemming, dan arus pusar. Sistem satu fasa dan dua fasa Pengenalan dan ciri-ciri sistem satu fasa, Kebaikan dan keburukan sistem satu fasa, Pengiraan voltan, kuasa, dan arus. Analisis dalam perunit dan sebenar.

4 Sistem tiga fasa Pengenalan dan ciri-ciri sistem tiga fasa, Kebaikan dan keburukan sistem tiga fasa, Lilitan tiga fasa sambungan delta, Lilitan tiga fasa sambungan bintang, Voltan dan arus dalam sistem sambungan bintang, Voltan dan arus dalam sistem sambungan delta, Kuasa dalam sistem tiga fasa dengan beban seimbang, Pengukuran kuasa aktif didalam sistem tiga fasa tiga wayar, Pengukuran faktor kuasa menggunakan dua wattmeter. Pengubah Pengubah: prinsip asas pengubah, struktur asas, nisbah pengubah, terminalogi belitan utama dan sekunder, kehilangan-kehilangan dlm pengubah, kadaran pengubah, dan binaan pengubah. Litar setara serta analisis dan pengiraan ringkas melibatkan pengubah. Mesin AT dan AU Penjana dan motor AT, prinsip operasi, kawalan, dan penggunaan Tork; Alternator, motor aruhan, motor satu fasa, prinsip operasi, dan jenis-jenis kawalan mesin AU.

5 KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik
Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

6 KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik
Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

7 KONSEP ASAS SISTEM ELEKTRIK

8

9 KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik
Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

10 ATOM STRUCTURE Atoms: basic building blocks of nature Molecule: smallest particle of a substance and has all of its characteristics Elements: matter composed of single type of atoms Compounds: different types of atoms combine chemically

11 Particles of atom Protons (+ charge) + +

12 Protons (+ charge) + + Neutrons (no charge)

13 Protons (+ charge) - + + Neutrons (no charge) - Electrons (- charge)

14 The electrons’ orbital paths are shown by the dashed lines.
The electrons orbit around the nucleus (neutron/proton cluster). Protons (+ charge) - + + Neutrons (no charge) - Electrons (- charge) The electrons’ orbital paths are shown by the dashed lines.

15 = Neutron + = Proton - = Electron The two electrons are in the same shell even though they have different orbital paths. - + + - HELIUM ATOM

16 KUANTITI DAN UNIT ELEKTRIK
Unit SI SI : International System of Unit yang diperkenalkan oleh National Bureau of Standards dalam tahun 1964 Kuantiti Unit asas Simbol Panjang Meter m Jisim Kilogram kg Masa Saat s Arus elektrik Ampere A Termodinamik Kelvin k Luminous intensity candela cd

17 Unit SI merangkumi sistem desimal untuk dihubungkan dengan unit yang lebih besar atau lebih kecil dengan unit asas dan menggunakan prefix piawaian untuk kuasa 10 iaitu: Pekali Prefix Simbol 1012 Tera T 109 Giga G 106 Mega M 103 Kilo k 100 10-3 Mili m 10-6 Micro 10-9 Nano n 10-12 Pico p 10-15 Femto f 10-18 Atto a

18 Unit Elektrik • Charge »»» Coulomb • Current »»» Ampere
• Voltage »»» Volt • Resistance »»» Ohm • Power »»» Watt

19 CAS ELEKTRIK Polarity: type of charge (-ve or +ve)
Electron: -ve charge Proton: +ve charge Electric charge create electric field of force

20 Force Between Electric Charges
_ charge charge _ charge _ _ charge _ charge Like charges produce a repelling force. When physically released, they repel each other.

21 Electric charge is a property possessed by both electrons and protons.
Quantity is CHARGE (Q) Base Unit is COULOMB (C) Examples of correct usage: Charge = 15 Coulombs Q = 15 C

22 Current is the movement of charge in a specified direction.
ARUS Current is the movement of charge in a specified direction.

23 Electric Current Terminology An ampere equals a coulomb per second.
Quantity is CURRENT (I) Base Unit is AMPERE (A) An ampere equals a coulomb per second. Examples of correct usage: Current = 12 Amperes I = 12 A

24 Electric Current Relationships
Charge Q Current = I = t Time Examples: Q 14 C = 1.4 A I = = t 10 s Q 14 C = 10 s t = = I 1.4 A

25 Types of current: Alternating current Direct current (arus terus)
(arus ulangalik) Direct current (arus terus) Damped alternating current (arus ulangalik teredam) Exponential current

26 Definition of Voltage VOLTAN
Voltage is the electric pressure or force that causes current. It is a potential energy difference between two points. It is also known as an electromotive force (emf).

27 A volt equals a joule per coulomb.
Voltage Terminology Quantity is VOLTAGE (V) Base Unit is VOLT (V) A volt equals a joule per coulomb. Examples of correct usage: Voltage = 32 Volts V = 32 V

28 Voltage Relationships
Energy W Voltage = V = Q Charge Examples: W 56 J = 28 V V = = Q 2 C W 84 J = 4 C Q = = V 21 V

29 Definition of Resistance
RINTANGAN Definition of Resistance Resistance is the opposition a material offers to current. Resistance is determined by: Type of material (resistivity) Temperature of material Cross-sectional area Length of material

30 Some Factors That Determine Resistance
For a specific material and temperature, this block has given amount of resistance. Doubling the length of the block, doubles the resistance. Doubling the cross-sectional area, halves the resistance.

31 Resistance Terminology An ohm equals a volt per ampere.
Quantity is RESISTANCE (R) Base Unit is OHM (W) An ohm equals a volt per ampere. Examples of correct usage: Resistance = 47 ohms R = 47 W

32 Resistance Relationships
Resistivity x length KL Resistance = R = A area Example: KL 1.4 x10-6 W· cm x 2 x104 cm R = = A 0.28 cm2 = 0.1 W

33 TENAGA Work (W) Energy (W) The joule (J)
The amount of work done equals the amount of energy used (converted). consists of a force moving through a distance. Energy (W) is the capacity to do work. Fifty joules of energy are required to do fifty joules of work. The joule (J) is the base unit for both energy and work.

34 Energy Conversion A cell converts chemical energy to electric energy.
A light bulb converts electric energy to light energy and heat energy.

35 Power is the rate of using energy or doing work.
KUASA Definition of Power Power is the rate of using energy or doing work. “Using energy” means that energy is being converted to a different form.

36 A watt equals a joule per second.
Power Terminology Quantity is POWER (P) Base Unit is WATT (W) A watt equals a joule per second. Examples of correct usage: Power = 120 Watts P = 120 W

37 Power Relationships Energy W Power = P = t Time Examples: W 158 J
W = Pt = 75 W x 25 s = 1875 J

38 KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik
Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

39 PENEBAT, KONDUKTOR DAN SEMIKONDUKTOR
Penebat (insulator) Materials that have high resistance to current Examples: paper, wood, plastic, rubber, glass and mica

40 Konduktor (conductor)
Materials that have very little resistance to current Examples: copper, aluminum, silver and iron Superconductivity: material has no resistance

41 Semikonduktor (semiconductor)
Materials which are between extreme of conductor and insulator Examples: silicon and germanium Allow some current to flow, yet have a considerable amount of resistance

42 KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik
Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

43 ELEMEN AKTIF DAN PASIF Circuit Elements Active elements Berkemampuan
membekalkan kuasa kepada litar Contoh : punca voltan dan arus Passive elements Hanya mampu menerima kuasa Contoh : perintang, induktor, kapasitor, diod dan lain-lain

44 Independent source Arus Voltan

45 Dependent source Arus Voltan

46 Symbol of circuit elements
Resistor (perintang) R UNIT: Ohm (Ω)

47 Resistor colour code

48 Resistor Colour Codes Yellow 4 7 Violet 00 Red ±10 % Silver

49 Resistor Colour Codes 56 x 103 ± 5 % = 56000 ± 5 % = 56 kW ± 5 %
Green = 5 Blue = 6 Orange = 3 Gold = ± 5 % 56 x 103 ± 5 % = 56000 ± 5 % = 56 kW ± 5 %

50 Resistor Colour Codes = 464 kW ± 2% 4 6 4 0 0 0 ± 2%

51 Capasitor (kapasitor)
UNIT: Farad (F)

52 Inductor (Induktor) L UNIT: Henry (H)

53 KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik
Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

54 HUKUM OHM Georg Simon Ohm ( ) formulated the relationships among voltage, current, and resistance as follows: The current in a circuit is directly proportional to the applied voltage and inversely proportional to the resistance of the circuit.

55 An energy or power source
This complete circuit uses the following: An energy or power source A control device A load Conductors Insulation (not shown)

56 Calculating Current V R = 36 V 1800 W I = = 0.02 A = 20 mA SPST S1 B1
1.8 kW B1 36 V V R = 36 V 1800 W I = = A = 20 mA

57 Calculating Resistance
B1 24 V A 0.03 A V I = 24 V 0.03 A R = = 800 W = 0.8 k W

58 Calculating Voltage A V = IR = 0.15 A x 270 W = 40.5 V 0.15 A B1 R

59 Calculating Power A V IV = P = 0.2 A x 54 V = 10.8 W P = I2R =
0.2 A x 0.2 A x 270 W = 10.8 W P = V2/R = (54 V x 54 V) / 270 W = 10.8 W

60 HUKUM KIRCHHOFF Gustav Robert Kirchhoff (1824 – 1887)
Models relationship between: circuit element currents (KCL) circuit element voltages (KVL) Beliau memperkenalkan dua hukum iaitu: Hukum Arus Kirchhoff (KCL) Hukum Voltan Kirchhoff (KVL)

61 Kirchhoff’s Current Law (KCL)
Current entering node = current exiting (What goes in, must come out) Convention: +i is exiting, -i is entering For any circuit node:

62 Kirchhoff’s Current Law (KCL)
No matter how many paths into and out of a single point all the current leaving that point must equal the current arriving at that point.

63 Kirchhoff’s Voltage Law (KVL)
voltage increases = voltage decreases (What goes up, must come down) Convention: hit minus (-) side first, write negative For any circuit loop:

64 Kirchhoff’s Voltage Law (KVL)
The voltage drops around any closed loop must equal the applied voltages

65 KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik
Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

66 KAEDAH ANALISIS LITAR: THEVENIN DAN NORTAN
MODEL LITAR LITAR SELARI LITAR SESIRI LITAR SELARI-SESIRI

67 LITAR SESIRI/SELARI Perintang yang disusun secara sesiri:
Rintangan setara Req = R1 + R2 + ……….+ RN

68 ARUS DALAM LITAR SESIRI
Arus dalam litar sesiri adalah sama pada setiap elemen litar VOLTAN DALAM LITAR SESIRI Voltan (VT) dalam litar sesiri adalah jumlah voltan bagi setiap elemen litar

69 Perintang yang disusun secara selari:

70 Rintangan setara:

71 Bagi litar yang mempunyai dua
perintang selari:

72 ARUS DALAM LITAR SELARI
Arus dalam litar sesiri adalah jumlah arus bagi setiap elemen litar VOLTAN DALAM LITAR SELARI Voltan (VT) dalam litar sesiri sama bagi setiap elemen litar

73 VOLTAGE DIVIDER

74 Menggunakan Hukum Ohm, didapati:
voltan pada perintang R2:

75 CURRENT DIVIDER

76 Menggunakan Hukum Ohm, (1)

77 Dari persamaan (1), diperolehi:

78 SOURCE TRANSFORMATION
Penjelmaan punca bermaksud prosidur untuk menjelmakan satu punca kepada bentuk punca yang lain sambil mengekalkan ciri-ciri terminal punca asal.

79 punca voltan tak bersandar yang sesiri dengan perintang boleh dijelmakan kepada satu punca arus yang selari dengan perintang atau sebaliknya

80 Penjelmaan punca

81 Contoh Penjelmaan Punca

82 LITAR SETARA THEVENIN Teori ini menyatakan bahawa kesemua elemen kecuali perintang beban boleh diwakilkan dengan satu litar setara yang hanya mengandungi satu punca voltan tak bersandar yang sesiri dengan satu perintang setara dan sambutan yang diukur pada perintang beban tidak berubah.

83 Litar Setara Thevenin

84 LITAR SETARA NORTON Litar setara ini mengandungi satu punca arus tak bersandar yang selari dengan satu perintang.

85 Contoh Litar Setara Thevenin dan Norton

86 Langkah 1: Penjelmaan punca

87 Langkah 2: Gabungkan punca dan
perintang selari

88 Langkah 3: Penjelmaan punca, gabungkan perintang sesiri dan litar setara Thevenin akan terhasil:

89 Langkah 4: Penjelmaan punca dan menghasilkan litar setara Norton:


Download ppt "EET103 TEKNOLOGI ELEKTRIK"

Similar presentations


Ads by Google