Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 1. Introduction Mathematical Programming (Optimization) Problem: min/max

Similar presentations


Presentation on theme: "Chapter 1. Introduction Mathematical Programming (Optimization) Problem: min/max "ā€” Presentation transcript:

1 Chapter 1. Introduction Mathematical Programming (Optimization) Problem: min/max š‘“(š‘„) subject to š‘” š‘– (š‘„)ā‰¤0, š‘–=1,ā€¦,š‘š, ( ā„Ž š‘— š‘„ =0, š‘—=1,ā€¦,š‘˜) (š‘„āˆˆš‘‹āŠ‚ š‘… š‘› ) š‘“, š‘” š‘– , ā„Ž š‘— : š‘… š‘› ā†’š‘… If š‘“, š‘” š‘– , ā„Ž š‘— linear (affine) function ļ‚® linear programming problem If solution set (or some of the variables) restricted to be integer points ļ‚® integer programming problem If š‘“, š‘” š‘– , ā„Ž š‘— (or part of them) nonlinear function ļ‚® nonlinear programming problem If min š‘“(š‘„), and š‘“(š‘„), š‘” š‘– (š‘„) are convex functions, no equality constraints ā†’ convex programming problem. Linear Programming 2016

2 (There may exist variables unrestricted in sign)
Linear programming: problem of optimizing (maximize or minimize) a linear (objective) function subject to linear inequality (and equality) constraints. General form: {max, min} š‘ ā€² š‘„ subject to š‘Ž š‘– ā€² š‘„ā‰„ š‘ š‘– , š‘–āˆˆ š‘€ 1 š‘Ž š‘– ā€² š‘„ā‰¤ š‘ š‘– , š‘–āˆˆ š‘€ 2 š‘Ž š‘– ā€² š‘„= š‘ š‘– , š‘–āˆˆ š‘€ 3 š‘„ š‘— ā‰„0, š‘—āˆˆ š‘ 1 , š‘„ š‘— ā‰¤0, š‘—āˆˆ š‘ 2 š‘, š‘Ž š‘– ,š‘„āˆˆ š‘… š‘› (There may exist variables unrestricted in sign) inner product of two column vectors š‘„,š‘¦āˆˆ š‘… š‘› : š‘„ ā€² š‘¦= š‘–=1 š‘› š‘„ š‘– š‘¦ š‘– If š‘„ ā€² š‘¦=0, š‘„,š‘¦ā‰ 0, then š‘„,š‘¦ are said to be orthogonal. In 3-D, the angle between the two vectors is 90 degrees. ( vectors are column vectors unless specified otherwise) Linear Programming 2016

3 š‘„ 1 , š‘„ 2 ,ā€¦, š‘„ š‘› : (decision) variables š‘ š‘– : right-hand-side
Big difference from systems of linear equations is the existence of objective function and linear inequalities (instead of equalities) Much deeper theoretical results and applicability than systems of linear equations. š‘„ 1 , š‘„ 2 ,ā€¦, š‘„ š‘› : (decision) variables š‘ š‘– : right-hand-side š‘Ž š‘– ā€² š‘„ { ļ‚³, ļ‚£, ļ€½ } š‘ š‘– : i th constraint š‘„ š‘— { ļ‚³, ļ‚£ } 0 : nonnegativity (nonpositivity) constraint š‘ ā€² š‘„ : objective function Other terminology: feasible solution, feasible set (region), free (unrestricted) variable, optimal (feasible) solution, optimal cost, unbounded Linear Programming 2016

4 Important submatrix multiplications
Interpretation of constraints: see as submatrix multiplication. A: š‘šĆ—š‘› matrix , where š‘’ š‘– is i-th unit vector denote constraints as š“š‘„ { ļ‚³, ļ‚£, ļ€½ } š‘ Linear Programming 2016

5 Any LP can be expressed as min š‘ ā€² š‘„, š“š‘„ā‰„š‘
max š‘ ā€² š‘„ ļ‚® min (āˆ’ š‘ ā€² š‘„) and take negative of the optimal cost š‘Ž š‘– ā€²š‘„ā‰¤ š‘ š‘– ļ‚® āˆ’š‘Ž š‘– ā€² š‘„ā‰„āˆ’ š‘ š‘– š‘Ž š‘– ā€² š‘„= š‘ š‘– ļ‚® š‘Ž š‘– ā€² š‘„ā‰„ š‘ š‘– , āˆ’š‘Ž š‘– ā€² š‘„ā‰„āˆ’ š‘ š‘– nonnegativities (nonpositivities) are special cases of inequalities which will be handled separately in the algorithms and duality theory. Feasible solution set of LP can always be expressed as š“š‘„ā‰„š‘ (or š“š‘„ā‰¤š‘) (called polyhedron, a set which can be described as a solution set of finitely many linear inequalities) We may sometimes use max š‘ ā€² š‘„, š“š‘„ā‰¤š‘ form (especially, when we study polyhedron) Linear Programming 2016

6 Standard form problems
Standard form : min š‘ ā€² š‘„, š“š‘„=š‘, š‘„ā‰„0 Two view points: Find optimal weights (nonnegative) from possible nonnegative linear combinations of columns of A to obtain b vector Find optimal solution that satisfies linear equations and nonnegativity Reduction to standard form Free (unrestricted) variable š‘„ š‘— ļ‚® š‘„ š‘— + āˆ’ š‘„ š‘— āˆ’ , š‘„ š‘— + , š‘„ š‘— āˆ’ ā‰„0 š‘— š‘Ž š‘–š‘— š‘„ š‘–š‘— ā‰¤ š‘ š‘– ļ‚® š‘— š‘Ž š‘–š‘— š‘„ š‘–š‘— + š‘  š‘– = š‘ š‘– , š‘  š‘– ā‰„0 (slack variable) š‘— š‘Ž š‘–š‘— š‘„ š‘–š‘— ā‰„ š‘ š‘– ļ‚® š‘— š‘Ž š‘–š‘— š‘„ š‘–š‘— āˆ’ š‘  š‘– = š‘ š‘– , š‘  š‘– ā‰„0 (surplus variable) Linear Programming 2016

7 Any (practical) algorithm can solve the LP problem in equality form only (except nonnegativity)
Modified form of the simplex method can solve the problem with free variables directly (without using difference of two variables). It gives more sensible interpretation of the behavior of the algorithm. Linear Programming 2016

8 1.2 Formulation examples See other examples in the text.
Minimum cost network flow problem Directed network šŗ=(š‘‰,š“), ( š‘‰ =š‘› ) arc capacity š‘¢ š‘–š‘— , (š‘–,š‘—)āˆˆš“, unit flow cost š‘ š‘–š‘— , (š‘–,š‘—)āˆˆš“ š‘ š‘– : net supply at node i ( š‘ š‘– > 0: supply node, š‘ š‘– < 0: demand node), (We may assume š‘–āˆˆš‘ š‘ š‘– = 0) Find minimum cost transportation plan that satisfies supply, demand at each node and arc capacities. minimize (š‘–,š‘—)āˆˆš“ š‘ š‘–š‘— š‘„ š‘–š‘— subject to {š‘—:(š‘–,š‘—)āˆˆš“} š‘„ š‘–š‘— āˆ’ š‘—: š‘—,š‘– āˆˆš“ š‘„ š‘—š‘– = š‘ š‘– , i = 1, ā€¦, n (out flow - in flow = net flow at node i, flow conservation constraints) (some people use, in flow ā€“ out flow = net flow) š‘„ š‘–š‘— ā‰¤ š‘¢ š‘–š‘— , (š‘–,š‘—)āˆˆš“ š‘„ š‘–š‘— ā‰„0, (š‘–,š‘—)āˆˆš“ Linear Programming 2016

9 Data can be sent using more than one path.
Choosing paths in a communication network ( (fractional) multicommodity flow problem) Multicommodity flow problem: Several commodities share the network. For each commodity, it is min cost network flow problem. But the commodities must share the capacities of the arcs. Generalization of min cost network flow problem. Many applications in communication, distribution / transportation systems Several commodities case Actually one commodity. But there are multiple origin and destination pairs of nodes (telecom, logistics, ..). Each origin-destination pair represent a commodity. Given telecommunication network (directed) with arc set A, arc capacity š‘¢ š‘–š‘— bits/sec, (š‘–,š‘—)āˆˆš“, unit flow cost š‘ š‘–š‘— /bit , (š‘–,š‘—)āˆˆš“, demand š‘ š‘˜š‘™ bits/sec for traffic from node k to node l. Data can be sent using more than one path. Find paths to direct demands with min cost. Linear Programming 2016

10 š‘„ š‘–š‘— š‘˜š‘™ : amount of data with origin k and destination l that
Decision variables: š‘„ š‘–š‘— š‘˜š‘™ : amount of data with origin k and destination l that traverses link (š‘–,š‘—)āˆˆš“ Let š‘ š‘– š‘˜š‘™ = š‘ š‘˜š‘™ if š‘–=š‘˜ āˆ’ š‘ š‘˜š‘™ if š‘–=š‘™ otherwise Formulation (flow based formulation) minimize (š‘–,š‘—)āˆˆš“ š‘˜ š‘™ š‘ š‘–š‘— š‘„ š‘–š‘— š‘˜š‘™ subject to {š‘—:(š‘–,š‘—)āˆˆš“} š‘„ š‘–š‘— š‘˜š‘™ āˆ’ š‘—: š‘—,š‘– āˆˆš“ š‘„ š‘—š‘– š‘˜š‘™ = š‘ š‘– š‘˜š‘™ , š‘–,š‘˜,š‘™=1,ā€¦,š‘› (out flow - in flow = net flow at node i for commodity from node k to node l) š‘˜ š‘™ š‘„ š‘–š‘— š‘˜š‘™ ā‰¤ š‘¢ š‘–š‘— , (š‘–,š‘—)āˆˆš“ (The sum of all commodities traversing link (š‘–,š‘—) should not exceed the capacity of link (i, j) ) š‘„ š‘–š‘— š‘˜š‘™ ā‰„0, š‘–,š‘— āˆˆš“, š‘˜,š‘™=1,ā€¦,š‘› Linear Programming 2016

11 Alternative formulation (path based formulation)
Let K: set of origin-destination pairs (commodities) š‘ š‘˜ : demand of commodity š‘˜āˆˆš¾ P(k): set of all possible paths for sending commodity kļƒŽK P(k;e): set of paths in P(k) that traverses arc eļƒŽA E(p): set of links contained in path p Decision variables: š‘¦ š‘ š‘˜ : fraction of commodity k sent on path p minimize š‘˜āˆˆš¾ š‘āˆˆš‘ƒ(š‘˜) š‘¤ š‘ š‘˜ š‘¦ š‘ š‘˜ subject to š‘āˆˆš‘ƒ(š‘˜) š‘¦ š‘ š‘˜ =1, for all š‘˜āˆˆš¾ š‘˜āˆˆš¾ š‘āˆˆš‘ƒ(š‘˜;š‘’) š‘ š‘˜ š‘¦ š‘ š‘˜ ā‰¤ š‘¢ š‘’ , for all š‘’āˆˆš“ 0ā‰¤ š‘¦ š‘ š‘˜ ā‰¤1, for all š‘āˆˆš‘ƒ š‘˜ , š‘˜āˆˆš¾, where š‘¤ š‘ š‘˜ = š‘ š‘˜ š‘’āˆˆšø(š‘) š‘ š‘’ If š‘¦ š‘ š‘˜ āˆˆ{0,1}, it is a single path routing problem (path selection problem, integer multicommodity flow problem). Linear Programming 2016

12 can be solved easily by column generation technique (later).
path based formulation has smaller number of constraints, but enormous number of variables. can be solved easily by column generation technique (later). Integer version is more difficult to solve. Extensions: Network design - also determine the number and type of facilities to be installed on the links (and/or nodes) together with routing of traffic. Variations: Integer flow. Bifurcation of traffic may not be allowed. Determine capacities and routing considering rerouting of traffic in case of network failure, Robust network design (data uncertainty), ... Linear Programming 2016

13 Pattern classification (Linear classifier)
Given m objects with feature vector š‘Ž š‘– āˆˆ š‘… š‘› , š‘–=1,ā€¦,š‘š. Objects belong to one of two classes. We know the class to which each sample object belongs. We want to design a criterion to determine the class of a new object using the feature vector. Want to find a vector (š‘„, š‘„ š‘›+1 )āˆˆ š‘… š‘›+1 with š‘„āˆˆ š‘… š‘› such that, if š‘–āˆˆš‘†, then š‘Ž š‘– ā€² š‘„ā‰„ š‘„ š‘›+1 , and if š‘–āˆ‰š‘†, then š‘Ž š‘– ā€² š‘„< š‘„ š‘›+1 . (if it is possible) Linear Programming 2016

14 Find a feasible solution (š‘„, š‘„ š‘›+1 ) that satisfies
š‘Ž š‘– ā€² š‘„ā‰„ š‘„ š‘›+1 , š‘–āˆˆš‘† š‘Ž š‘– ā€² š‘„< š‘„ š‘›+1 , š‘–āˆ‰š‘† for all sample objects i Is this a linear programming problem? ( no objective function, strict inequality in constraints) Linear Programming 2016

15 Is strict inequality allowed in LP?
consider min x, x > 0 ļ‚® no minimum point. only infimum of objective value exists If the system has a feasible solution (š‘„, š‘„ š‘›+1 ), we can make the difference of the values in the right hand side and in the left hand side large by using solution š‘€(š‘„, š‘„ š‘›+1 ) for M > 0 and large. Hence there exists a solution that makes the difference at least 1 if the system has a solution. Remedy: Use š‘Ž š‘– ā€² š‘„ā‰„ š‘„ š‘›+1 , š‘–āˆˆš‘† š‘Ž š‘– ā€² š‘„ā‰¤ š‘„ š‘›+1 āˆ’1, š‘–āˆ‰š‘† Important problem in data mining with applications in target marketing, bankruptcy prediction, medical diagnosis, process monitoring, ā€¦ Linear Programming 2016

16 Variations What if there are many choices of hyperplanes? any reasonable criteria? What if there is no hyperplane separating the two classes? Do we have to use only one hyperplane? Use of nonlinear function possible? How to solve them? SVM (support vector machine), convex optimization More than two classes? Linear Programming 2016

17 1.3 Piecewise linear convex objective functions
Some problems involving nonlinear functions can be modeled as LP. Def: Function š‘“: š‘… š‘› ā†’š‘… is called a convex function if for all š‘„,š‘¦āˆˆ š‘… š‘› and all ļ¬ļƒŽ[0, 1] š‘“ šœ†š‘„+ 1āˆ’šœ† š‘¦ ā‰¤šœ†š‘“ š‘„ + 1āˆ’šœ† š‘“(š‘¦). ( the domain may be restricted) f called concave if āˆ’š‘“ is convex (picture: the line segment joining (š‘„,š‘“ š‘„ ) and (š‘¦,š‘“ š‘¦ ) in š‘… š‘›+1 is not below the locus of š‘“(š‘„) ) Linear Programming 2016

18 Then ļ¬1x + ļ¬2y is said to be a convex combination of x, y.
Def: š‘„,š‘¦āˆˆ š‘… š‘› , ļ¬1, ļ¬2 ļ‚³ 0, ļ¬1+ ļ¬2 = 1 Then ļ¬1x + ļ¬2y is said to be a convex combination of x, y. Generally, š‘–=1 š‘˜ šœ† š‘– š‘„ š‘– , where š‘–=1 š‘˜ šœ† š‘– =1 and šœ† š‘– ā‰„0, š‘–=1,ā€¦,š‘˜ is a convex combination of the points š‘„ 1 ,ā€¦, š‘„ š‘˜ . Def: A set š‘†āŠ† š‘… š‘› is convex if for any š‘„,š‘¦āˆˆš‘†, we have šœ† 1 š‘„+ šœ† 2 š‘¦āˆˆš‘† for any šœ† 1 , šœ† 2 ā‰„0, šœ† 1 + šœ† 2 =1. Picture: šœ† 1 š‘„+ šœ† 2 š‘¦= šœ† 1 š‘„+ 1āˆ’ šœ† 1 š‘¦, 0ā‰¤ šœ† 1 ā‰¤1 =š‘¦+ šœ† 1 (š‘„āˆ’š‘¦), 0ā‰¤ šœ† 1 ā‰¤1 (line segment joining š‘„,š‘¦ lies in š‘†) x (ļ¬1 = 1) (š‘„āˆ’š‘¦) y (ļ¬1 = 0) (š‘„āˆ’š‘¦) Linear Programming 2016

19 Picture: šœ† 1 š‘„+ šœ† 2 š‘¦= šœ† 1 š‘„+ 1āˆ’ šœ† 1 š‘¦,
If we have šœ† 1 š‘„+ šœ† 2 š‘¦, šœ† 1 + šœ† 2 =1 (without šœ† 1 , šœ† 2 ā‰„0), it is called an affine combination of š‘„ and š‘¦. Picture: šœ† 1 š‘„+ šœ† 2 š‘¦= šœ† 1 š‘„+ 1āˆ’ šœ† 1 š‘¦, =š‘¦+ šœ† 1 (š‘„āˆ’š‘¦), (ļ¬1 is arbitrary) (line passing through points š‘„,š‘¦) Linear Programming 2016

20 Picture of convex function
Linear Programming 2016

21 relation between convex function and convex set
Def: š‘“: š‘… š‘› ā†’š‘…. Define epigraph of š‘“ as epi(š‘“) = { š‘„,šœ‡ āˆˆ š‘… š‘›+1 :šœ‡ā‰„š‘“ š‘„ }. Then previous definition of convex function is equivalent to epi(š‘“) being a convex set. When dealing with convex functions, we frequently consider epi(š‘“) to exploit the properties of convex sets. Consider operations on functions that preserve convexity and operations on sets that preserve convexity. Linear Programming 2016

22 Consider š‘“ š‘„ = š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š ( š‘ š‘– ā€² š‘„+ š‘‘ š‘– ), š‘ š‘– āˆˆ š‘… š‘› , š‘‘ š‘– āˆˆš‘…
Example: Consider š‘“ š‘„ = š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š ( š‘ š‘– ā€² š‘„+ š‘‘ š‘– ), š‘ š‘– āˆˆ š‘… š‘› , š‘‘ š‘– āˆˆš‘… (maximum of affine functions, called a piecewise linear convex function.) š‘ 1 ā€² š‘„+ š‘‘ 1 š‘ 2 ā€² š‘„+ š‘‘ 2 š‘ 3 ā€² š‘„+ š‘‘ 3 š‘„ Linear Programming 2016

23 Thm: Let š‘“ 1 ,ā€¦, š‘“ š‘š : š‘… š‘› ā†’š‘… be convex functions. Then
š‘“ š‘„ = š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š š‘“ š‘– (š‘„) is also convex. pf) š‘“ šœ†š‘„+ 1āˆ’šœ† š‘¦ = š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š š‘“ š‘– (šœ†š‘„+ 1āˆ’šœ† š‘¦) ļ‚£ š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š (šœ† š‘“ š‘– š‘„ + 1āˆ’šœ† š‘“ š‘– š‘¦ ) ļ‚£ š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š šœ† š‘“ š‘– š‘„ + š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š (1āˆ’šœ†) š‘“ š‘– (š‘¦) = šœ†š‘“ š‘„ + 1āˆ’šœ† š‘“(š‘¦) ļæ Linear Programming 2016

24 Min of piecewise linear convex functions
minimize š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š ( š‘ š‘– ā€² š‘„+ š‘‘ š‘– ) Subject to š“š‘„ā‰„š‘ minimize š‘§ Subject to š‘§ā‰„ š‘ š‘– ā€² š‘„+ š‘‘ š‘– , š‘–=1,ā€¦,š‘š š“š‘„ā‰„š‘ Linear Programming 2016

25 Minimum of a piecewise linear concave function?
Q: What can we do about finding maximum of a piecewise linear convex function? maximum of a piecewise linear concave function (can be obtained as minimum of affine functions)? Minimum of a piecewise linear concave function? Linear Programming 2016

26 Convex function has a nice property such that a local minimum point is a global minimum point. (when domain is š‘… š‘› or convex set) (HW later) Hence finding the minimum of a convex function defined over a convex set is usually easy. But finding the maximum of a convex function is difficult to solve. Basically, we need to examine all local maximum points. Similarly, finding the maximum of a concave function is easy, but finding the minimum of a concave function is difficult. Linear Programming 2016

27 Q: What about constraints š‘“(š‘„)ā‰„ā„Ž? Can it be modeled as LP?
Suppose we have š‘“(š‘„)ā‰¤ā„Ž in constraints, where š‘“(š‘„) is a piecewise linear convex function š‘“ š‘„ = š‘šš‘Žš‘„ š‘–=1,ā€¦,š‘š š‘“ š‘– ā€² š‘„+ š‘” š‘– . ļƒž š‘“ š‘– ā€² š‘„+ š‘” š‘– ā‰¤ā„Ž, š‘–=1,ā€¦,š‘š Q: What about constraints š‘“(š‘„)ā‰„ā„Ž? Can it be modeled as LP? Def: š‘“: š‘… š‘› ā†’š‘…, is a convex function, š›¼āˆˆš‘… The set š¶={š‘„:š‘“(š‘„)ā‰¤š›¼} is called the level set of š‘“. level set of a convex function is a convex set. (HW) solution set of LP is convex (easy) ļ‚® non-convex solution set canā€™t be modeled as LP. Linear Programming 2016

28 Problems involving absolute values
minimize š‘–=1 š‘› š‘ š‘– | š‘„ š‘– | subject to š“š‘„ā‰„š‘ (assume š‘ š‘– >0) More direct formulations than piecewise linear convex function is possible. (1) min š‘–=1 š‘› š‘ š‘– š‘§ š‘– subject to š“š‘„ā‰„š‘ š‘„ š‘– ā‰¤ š‘§ š‘– , š‘–=1,ā€¦,š‘› āˆ’ š‘„ š‘– ā‰¤ š‘§ š‘– , š‘–=1,ā€¦,š‘› (2) min š‘–=1 š‘› š‘ š‘– ( š‘„ š‘– + + š‘„ š‘– āˆ’ ) subject to š“ š‘„ + āˆ’š“ š‘„ āˆ’ ā‰„š‘ š‘„ + , š‘„ āˆ’ ā‰„0 (want š‘„ š‘– + = š‘„ š‘– if š‘„ š‘– ā‰„0, š‘„ š‘– āˆ’ =āˆ’ š‘„ š‘– if š‘„ š‘– <0 and š‘„ š‘– + š‘„ š‘– āˆ’ =0, i.e., at most one of š‘„ š‘– + , š‘„ š‘– āˆ’ is positive in an optimal solution. š‘ š‘– >0 guarantees that.) Linear Programming 2016

29 Data Fitting Regression analysis using absolute value function
Given m data points š‘Ž š‘– , š‘ š‘– , š‘–=1,ā€¦,š‘š, š‘Ž š‘– āˆˆ š‘… š‘› , š‘ š‘– āˆˆš‘…. Want to find š‘„āˆˆ š‘… š‘› that predicts results š‘ given š‘Ž with function š‘= š‘Ž ā€² š‘„. Want š‘„ that minimizes the maximum prediction error | š‘ š‘– āˆ’ š‘Ž š‘– ā€² š‘„| for all š‘–. minimize š‘§ subject to š‘ š‘– āˆ’ š‘Ž š‘– ā€² š‘„ā‰¤š‘§, š‘–=1,ā€¦,š‘š āˆ’ š‘ š‘– + š‘Ž š‘– ā€² š‘„ā‰¤š‘§, š‘–=1,ā€¦,š‘š (want approximate solution š‘„ of š‘Ž š‘– ā€² š‘„= š‘ š‘– , š‘–=1,ā€¦,š‘š (š“š‘„=š‘) ļƒž š‘šš‘–š‘› max š‘– š‘ š‘– āˆ’ š‘Ž š‘– ā€² š‘„ ) Linear Programming 2016

30 Alternative criterion minimize š‘–=1 š‘š | š‘ š‘– āˆ’ š‘Ž š‘– ā€² š‘„|
subject to š‘ š‘– āˆ’ š‘Ž š‘– ā€² š‘„ā‰¤ š‘§ š‘– , š‘–=1,ā€¦,š‘š āˆ’ š‘ š‘– + š‘Ž š‘– ā€² š‘„ā‰¤ š‘§ š‘– , š‘–=1,ā€¦,š‘š šæ š‘ norm of š‘„āˆˆ š‘… š‘› ā‰” š‘—=1 š‘› š‘„ š‘— š‘ 1/š‘ Quadratic error function can't be modeled as LP, but need calculus method (closed form solution) Linear Programming 2016

31 Special case of piecewise linear objective function : separable piecewise linear objective function.
function š‘“: š‘… š‘› ā†’š‘…, is called separable if š‘“ š‘„ = š‘“ 1 š‘„ 1 + š‘“ 2 š‘„ 2 + ā€¦+ š‘“ š‘› ( š‘„ š‘› ) š‘“ š‘– ( š‘„ š‘– ) š‘ 1 < š‘ 2 < š‘ 3 < š‘ 4 š‘ 4 Approximation of nonlinear function. š‘ 3 slope: š‘ š‘– š‘ 2 š‘ 1 š‘„ š‘– š‘Ž 1 š‘Ž 2 š‘Ž 3 š‘„ 1š‘– š‘„ 2š‘– š‘„ 3š‘– š‘„ 4š‘– Linear Programming 2016

32 0ā‰¤ š‘„ 1š‘– ā‰¤ š‘Ž 1 , 0ā‰¤ š‘„ 2š‘– ā‰¤ š‘Ž 2 āˆ’š‘Ž 1 , 0ā‰¤ š‘„ 3š‘– ā‰¤ š‘Ž 3 āˆ’š‘Ž 2 , 0ā‰¤ š‘„ 4š‘–
Express variable š‘„ š‘– in the constraints as š‘„ š‘– ā‰” š‘„ 1š‘– + š‘„ 2š‘– + š‘„ 3š‘– + š‘„ 4š‘– , where 0ā‰¤ š‘„ 1š‘– ā‰¤ š‘Ž 1 , 0ā‰¤ š‘„ 2š‘– ā‰¤ š‘Ž 2 āˆ’š‘Ž 1 , 0ā‰¤ š‘„ 3š‘– ā‰¤ š‘Ž 3 āˆ’š‘Ž 2 , 0ā‰¤ š‘„ 4š‘– In the objective function, use : min š‘ 1 š‘„ 1š‘– + š‘ 2 š‘„ 2š‘– + š‘ 3 š‘„ 3š‘– + š‘ 4 š‘„ 4š‘– Since we solve min problem, it is guaranteed that we get š‘„ š‘˜š‘– >0 in an optimal solution implies š‘„ š‘—š‘– , š‘—<š‘˜ have values at their upper bounds. Linear Programming 2016

33 1.4 Graphical representation and solution
Let š‘Žāˆˆ š‘… š‘› , š‘āˆˆš‘…. Geometric intuition for the solution sets of {š‘„: š‘Ž ā€² š‘„=0} {š‘„: š‘Ž ā€² š‘„ā‰¤0} {š‘„: š‘Ž ā€² š‘„ā‰„0} {š‘„: š‘Ž ā€² š‘„=š‘} {š‘„: š‘Ž ā€² š‘„ā‰¤š‘} {š‘„: š‘Ž ā€² š‘„ā‰„š‘} Linear Programming 2016

34 Geometry in 2-D {š‘„: š‘Ž ā€² š‘„ā‰„0} š‘Ž { š‘„ :š‘Žā€™š‘„ ļ‚£ 0 } { š‘„ :š‘Žā€™š‘„=0 }
Linear Programming 2016

35 Let š‘§ be a (any) point satisfying š‘Ž ā€² š‘„=š‘. Then
š‘„: š‘Ž ā€² š‘„=š‘ = š‘„: š‘Ž ā€² š‘„= š‘Ž ā€² š‘§ ={š‘„: š‘Ž ā€² š‘„āˆ’š‘§ =0} Hence š‘„āˆ’š‘§=š‘¦, where š‘¦ is any solution to š‘Ž ā€² š‘¦=0, and š‘„=š‘¦+š‘§. Similarly, for {š‘„: š‘Ž ā€² š‘„ā‰¤š‘}, {š‘„: š‘Ž ā€² š‘„ā‰„š‘}. {š‘„: š‘Ž ā€² š‘„ā‰„š‘} š‘Ž š‘§ {š‘„: š‘Ž ā€² š‘„ā‰¤š‘} {š‘„: š‘Ž ā€² š‘„=š‘} {š‘„: š‘Ž ā€² š‘„=0} Linear Programming 2016

36 gradient of obj. fn. is ( š‘ 1 , š‘ 2 ) š‘„2
min š‘ 1 š‘„ 1 + š‘ 2 š‘„ 2 s.t āˆ’ š‘„ 1 + š‘„ 2 ā‰¤1, š‘„ 1 ā‰„0, š‘„ 2 ā‰„0 gradient of obj. fn. is ( š‘ 1 , š‘ 2 ) š‘„2 š‘=(1, 0) š‘=(āˆ’1, āˆ’1) š‘=(1, 1) š‘=(0, 1) š‘„1 {š‘„: š‘„1 + š‘„2 = 0} {š‘„: š‘„1 + š‘„2 = š‘§} Linear Programming 2016

37 Representing complex solution set in 2-D
{ š‘› variables, š‘š equations (row vectors of the š“ matrix in š“š‘„=š‘ are linearly independent), nonnegativity, and š‘›āˆ’š‘š=2 } š‘„3 (e.g. š‘„ 1 + š‘„ 2 + š‘„ 3 =1, š‘„ š‘– ā‰„0 āˆ€š‘–) š‘„2 š‘„1=0 š‘„2=0 š‘„3=0 š‘„1 See text sec. 1.5, 1.6 for more backgrounds Linear Programming 2016


Download ppt "Chapter 1. Introduction Mathematical Programming (Optimization) Problem: min/max "

Similar presentations


Ads by Google