Presentation is loading. Please wait.

Presentation is loading. Please wait.

Log-Linear Models Local Structure Representation Probabilistic

Similar presentations


Presentation on theme: "Log-Linear Models Local Structure Representation Probabilistic"— Presentation transcript:

1 Log-Linear Models Local Structure Representation Probabilistic
Graphical Models Local Structure Log-Linear Models

2 Log-Linear Representation
Each feature fj has a scope Dj Different features can have same scope

3 Representing Table Factors
(X1, X2) =

4 Features for Language Features: word capitalized, word in atlas or name list, previous word is “Mrs”, next word is “Times”, … Phrases

5 Ising Model

6 Metric MRFs All Xi take values in label space V
Distance function  : V  V  R Reflexivity: (v,v) = 0 for all v Symmetry: (v1,v2) = (v2,v1) for all v1, v2 Triangle inequality: (v1,v2)  (v1,v3) + (v3, v2) for all v1, v2, v3 want Xi and Xj to take “similar” values Xi Xj

7 Metric MRFs All Xi take values in label space V
Distance function  : V  V  R want Xi and Xj to take “similar” values Xi Xj values of Xi and Xj far in  lower probability

8 Metric MRF Examples 1 (vk,vl) = vk=vl otherwise (vk,vl) vk-vl
1 1 (vk,vl) = vk=vl otherwise (vk,vl) vk-vl (vk,vl) vk-vl

9 Metric MRF: Segmentation
1 1 (vk,vl) = vk=vl otherwise

10 Metric MRF: Denoising (vk,vl) = |vk-vl| vk-vl vk-vl
(vk,vl) = max(|vk-vl|,d) Similar idea for stereo reconstruction


Download ppt "Log-Linear Models Local Structure Representation Probabilistic"

Similar presentations


Ads by Google