Download presentation
Presentation is loading. Please wait.
Published byΈρασμος Αποστόλου Modified over 6 years ago
1
Log-Linear Models Local Structure Representation Probabilistic
Graphical Models Local Structure Log-Linear Models
2
Log-Linear Representation
Each feature fj has a scope Dj Different features can have same scope
3
Representing Table Factors
(X1, X2) =
4
Features for Language Features: word capitalized, word in atlas or name list, previous word is “Mrs”, next word is “Times”, … Phrases
5
Ising Model
6
Metric MRFs All Xi take values in label space V
Distance function : V V R Reflexivity: (v,v) = 0 for all v Symmetry: (v1,v2) = (v2,v1) for all v1, v2 Triangle inequality: (v1,v2) (v1,v3) + (v3, v2) for all v1, v2, v3 want Xi and Xj to take “similar” values Xi Xj
7
Metric MRFs All Xi take values in label space V
Distance function : V V R want Xi and Xj to take “similar” values Xi Xj values of Xi and Xj far in lower probability
8
Metric MRF Examples 1 (vk,vl) = vk=vl otherwise (vk,vl) vk-vl
1 1 (vk,vl) = vk=vl otherwise (vk,vl) vk-vl (vk,vl) vk-vl
9
Metric MRF: Segmentation
1 1 (vk,vl) = vk=vl otherwise
10
Metric MRF: Denoising (vk,vl) = |vk-vl| vk-vl vk-vl
(vk,vl) = max(|vk-vl|,d) Similar idea for stereo reconstruction
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.