Presentation is loading. Please wait.

Presentation is loading. Please wait.

Analytic Number Theory MTH 435

Similar presentations


Presentation on theme: "Analytic Number Theory MTH 435"β€” Presentation transcript:

1 Analytic Number Theory MTH 435
Dr Mohib Ali

2 Review of Lecture 4 Diophantine equations and their solutions
Construction of solutions using extended Euclidean algorithm Diophantine equations and their solutions in positive integers.(without proof)

3 Positive Solutions for Diophantine Equation
Theorem: Let π‘Ž, 𝑏 and 𝑐 be positive integers with π‘Ž,𝑏 =1 and suppose π‘₯ βˆ— , y βˆ— is any solution of π‘Žπ‘₯+𝑏𝑦=𝑐. Then the number of positive solutions of π‘Žπ‘₯+𝑏𝑦=𝑐 is the number of 𝑑 for which βˆ’ π‘₯ βˆ— 𝑏 <𝑑< 𝑦 βˆ— π‘Ž . Proof:

4 Positive Solutions for Diophantine Equation
Proof Continued…

5 Positive Solutions for Diophantine Equation
Examples: Reconsider the previous example of 5π‘₯+7𝑦=10.

6 Examples

7 Congruences Definition: Let π‘š be a positive integer. Two integers π‘Ž and 𝑏 are congruent modulo π‘š if π‘š divides their difference

8 Congruences Least positive residues:

9 Congruences

10 Congruences Complete Residue System:

11 Congruences

12 Congruences

13 Elementary properties
Theorem: Let π‘š be a positive integer. If π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š), then π‘β‰‘π‘Ž π‘šπ‘œπ‘‘ π‘š . If π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š) and 𝑏≑𝑐 (π‘šπ‘œπ‘‘ π‘š), then π‘Žβ‰‘π‘ π‘šπ‘œπ‘‘ π‘š . If π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š) and 𝑐≑𝑑 (π‘šπ‘œπ‘‘ π‘š) then π‘ŽΒ±π‘β‰‘π‘Β±π‘‘ π‘šπ‘œπ‘‘ π‘š . If π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š) then π‘π‘Žβ‰‘π‘π‘ (π‘šπ‘œπ‘‘ π‘š) for any integer 𝑐. For any common divisor 𝑐 of π‘Ž,𝑏 and π‘š we have π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š) if and only if π‘Ž 𝑐 ≑ 𝑏 𝑐 (π‘šπ‘œπ‘‘ π‘š 𝑐 ). Proof:

14

15

16

17 Elementary Properties
Theorem: Let π‘š be a positive integer and π‘Ž,𝑏,𝑐 and 𝑑 are arbitrary integers. If π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š) and 𝑐≑𝑑 (π‘šπ‘œπ‘‘ π‘š) then π‘Žπ‘β‰‘π‘π‘‘ π‘šπ‘œπ‘‘ π‘š . If π‘Žβ‰‘π‘ π‘šπ‘œπ‘‘ π‘š , then π‘Ž 𝑛 ≑ 𝑏 𝑛 (π‘šπ‘œπ‘‘ π‘š) for any positive integer 𝑛. If 𝑓(π‘₯) is any polynomial with integer coefficients and π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š) then 𝑓 π‘Ž ≑𝑓 𝑏 (π‘šπ‘œπ‘‘ π‘š). Proof.

18

19

20 Elementary properties
Before going to the further properties of congruences we revisit one important property of l.c.m. Theorem: The least common multiple of two integers divide any other common multiple of two integers. Proof:

21

22 Elementary properties
Theorem: Let π‘š be a positive integer. Suppose 𝑑 | π‘š and 𝑑>0. If π‘Žβ‰‘π‘ π‘šπ‘œπ‘‘ π‘š then π‘Žβ‰‘π‘ π‘šπ‘œπ‘‘ 𝑑 . If π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š 1 ) and π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š 2 ) then π‘Žβ‰‘π‘ (π‘šπ‘œπ‘‘ π‘š 1 , π‘š 2 ) Proof:

23

24 Review of Lecture 5 Definition of Congruences
Divisibility and Congruences Multiples, addition and multiplication of congruences


Download ppt "Analytic Number Theory MTH 435"

Similar presentations


Ads by Google