Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture Angular Momentum

Similar presentations


Presentation on theme: "Lecture Angular Momentum"— Presentation transcript:

1 Lecture Angular Momentum
Tidal-Torque Theory Halo spin Angular-momentum distribution within halos Gas Condensation and Disk Formation The AM Problem(s) Thin disk, thick disk, bulge

2

3 Disk Size Spin parameter Conservation of specific angular momentum J/M

4 Tidal-Torque Theory (TTT)
Peebles White 1984

5 N-body simulation of Halo Formation

6 N-body simulation of Halo Formation

7 Origin of Angular Momentum
Tidal Torque Theory (TTT): Peebles White 1984 proto-galaxy perturber Tidal: Inertia: Result:

8 Tidal-Torque Theory Proto-halo: a Lagrangian patch Γ Γ Halo

9 Tidal-Torque Theory angular momentum in Eulerian patch
comoving coordinates const. in m.d. displacement from Lagrangian q to Eulerian x laminar flow average over q in Γ Zel’dovich approximation in a flat universe in EdS 2nd-order Taylor expansion of potential about qcm=0 Deformation tensor Inertia tensor antisymmetric tensor

10 Tidal-Torque Theory Deformation tensor Inertia tensor antisymmetric Tidal tensor = Shear tensor Only the trace-less part contributes Quadrupolar Inertia L by gravitational coupling of Quadrupole moment of Γ with Tidal field from neighboring fluctuations →T and I must be misaligned. L∝t till ~turnaround perturber

11 TTT vs Simulations (Porciani, Dekel & Hoffman 2002)
Alignment of T and I: Spin originates from the residual misalignment. → Small spin !

12 TTT vs. Simulations: Amplitude Growth Rate Porciani, Dekel & Hoffman 02
Direction

13 TTT vs Simulations: Scatter (Porciani, Dekel & Hoffman 2002)

14 TTT predicts the spin amplitude to within a factor of ~2,
but it is not a very reliable predictor of spin direction.

15 Alignment of I and T: Protohalos and Filaments

16 Alignment of I and T: Protohalos and Filaments

17 Stages in Halo Formation

18 Spin axis and Large-Scale Structure
TTT: The spin direction is correlated with the intermediate principal axis of the Iij tensor at turnaround. In a large-scale pancake: the spin axis should tend to lie in the plane.

19 Disk-Pancake Alignment in the Local Supercluster

20 Halo Spin Parameter Fall & Efstathiou 1980 Barnes & Efstathiou 1984
Steinmetz et al … Bullock et al. 2001b

21 λ is constant, independent of a or M
Halo Spin Parameter Peebles 76: dimensionless Bullock et al. 2001 same for isothermal sphere TTT: J determined at turnaround λ is constant, independent of a or M simulations: λ~0.05

22 Distribution of Halo Spins
<λ> ~ 0.04 Δlnλ ~ 0.5

23 Spin vs Mass, Concentration, History
λ distribution is universal λ correlated with ac, anti-correlated with C

24 Spin Jump in a Major Merger
Burkert & D’onghia 04 λ quiet halos with no recent major merger J time

25 J Distribution inside Halos
Bullock et al. 2001b

26 Universal Distribution of J inside Halos
Bullock et al. 2001b Two parameter family: spin parameter λ and shape parameter μ P(μ) μ-1 λ μ-1

27 Distribution of J with radius: a power-law profile
j(r)~Ms s j(r) /jmax s=1.3±0.3 M(<r) /Mv Mvir

28 Distribution of J in space
Toy model: J by minor mergers r Tidal radius Assume m and j are deposited locally in a shell r M(<r) /Mv j(r) /jmax NFW halo s=1.3±0.3 j(r) /jmax M(<r) /Mv

29 Formation of Stellar Disks and Spheroids inside DM Halos
White & Rees 1978 Fall & Efstathiou 1980 Mo, Mao & White

30

31 Galaxy Types: Disks and Spheroids
The morphology of a galaxy is a transient feature dictated by the mass accretion history of its dark matter halo most stars form in disks; spheroids result from subsequent mergers disks result from smooth gas accretion; oldest disk stars are often used to date the last major merger event

32 Galaxy Formation in halos
radiative cooling cold hot cold gas  young stars merger hhalos accretion disk spheroid  old stars

33 Gas versus Dark Matter Navarro, Steinmetz

34 Flat gaseous disk vs spheroidal DM halo

35 Disk/Bulge Formation (gas only) (Navarro, Steinmetz)

36 Disk Formation MW size (SPH, Governato)

37 Disk Formation – quiet history

38 Disk Formation - mergers

39 Disk Size Spin parameter Conservation of specific angular momentum J/M

40 Disk Profile from the Halo J Distribution
Assume the gas follows the halo j distribution Assume conservation of j during infall from halo to disk. In disk: lower j at lower r In disk: Assume isothermal sphere No adiabatic contraction

41 Disk Profile: Shape Problem
Bullock et al. 2001b r/Rvir Σd(r) [Md/Rv2] Σd(r) [Md/Rv2] r/Rvir

42 The Angular-Momentum Problem
Navarro & Steinmetz

43 Navarro & Steinmetz et al.
The Spin Catastrophe Navarro & Steinmetz et al. observations simulations j j

44 The spin catastrophe observed Simulated SPH Steinmetz, Navarro, et al.

45 Observed j distribution in dwarfs
BBS halo disk Observed j distribution in dwarfs Low fbaryons0.03 Missing low j High baryons0.07 P(j/jtot ) j/jtot van den Bosch, Burkert & Swaters 2002

46 Over-cooling  spin catastrophe
Maller & Dekel 02 tidal stripping + DM halo gas cooling satellite dynamical friction Feedback can save the day

47 Orbital-merger model:
Add orbital angular momentum in merger history Merger history t Binney & Tremaine Orbit parameters and random orientation

48 Succes of orbital-merger model
simulations Maller, Dekel & Somerville 2002

49 Model success: j distribution in halos
simulations

50 Low/high-j from minor/major mergers
model simulations High-j from major mergers J Low-j from minor mergers

51 Feedback in satellite halos
hot gas jb<jDM DM blow out jb>jDM hot gas jb=jDM

52 Model vs Data (Maller & Dekel 02)
BBS data: 14 dwarfs, van den Bosch, Burkert & Swaters 02 baryon fraction spin parameter model dwarfs bright BBS data BBS data model dwarfs Vvir=60 One free parameter in model: Vfeedback 90 km s-1

53 J-distribution within galaxies
data model DM halo disk BBS: van den Bosch, Burkert & Swaters 2002

54 Summary: feedback effect on spin
In big satellites (merging to big galaxies) heating  gas expansion Rb~RDM  tidal stripping together  bar~ DM In small satellites (merging to dwarfs) gas blowout  fbar down blowout of low j gas  bar > DM

55 Thin Disk and Thick Disk
Navarro & Steinmetz

56 Dynamical Components of a Simulated galaxy

57 Dynamical components of a simulated galaxy
non-rotating spheroid thick disk thin disk Orbital Circularity Abadi et al 03

58


Download ppt "Lecture Angular Momentum"

Similar presentations


Ads by Google