Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wide Binaries: the non-violent end of the semi-major axis distribution

Similar presentations


Presentation on theme: "Wide Binaries: the non-violent end of the semi-major axis distribution"— Presentation transcript:

1 Wide Binaries: the non-violent end of the semi-major axis distribution
Julio Chanamé Hubble Fellows Symposium 2010

2 Massive Black Holes and Galactic Globular Clusters
Wide Binaries: the non-violent end of the semi-major axis distribution Massive Black Holes and Stellar Dynamics in Galactic Globular Clusters 2011 Symposium Julio Chanamé Hubble Fellows Symposium 2010

3 Wide Binaries: the non-violent end of the semi-major axis distribution
stellar masses, radii distance scale chemical evolution CVs, novae, supernovae GRBs …. Duquennoy & Mayor (1991)

4 Wide Binaries: the non-violent end of the semi-major axis distribution
stellar masses, radii distance scale chemical evolution CVs, novae, supernovae GRBs …. 40 AU 103 AU 2104 AU wide binaries a = AU P ~ 105 yr m = 2 M vorb  1 km/s Duquennoy & Mayor (1991)

5 Wide Binaries: the non-violent end of the semi-major axis distribution
Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries stellar parameters for field stars star formation dynamics and Galactic astronomy

6 Parallax-based distances to low-mass field stars
NLTT + Hipparcos LSPM-N + Hipparcos Gould & Chanamé (2004) Lépine & Bongiorno (2007)

7 White dwarfs in wide binaries
Monteiro et al. (2006) Initial-to-final mass relation stellar parameteres: M, Z, redshift, radial velocity age metallicity relation for Galactic disk WD luminosity function and age of Galactic disk initial-final mass relations for WDs empirical constraints on mass loss age-activity relations for low-mass stars ….. Catalán et al. (2008)

8 Subsample of halo binaries with Hipparcos components
Galactic Astronomy Subsample of halo binaries with Hipparcos components halo disk secondaries primaries Silvestri et al. (2001) Chanamé & Ivans (in prep.)

9 Galactic Astronomy halo disk Silvestri et al. (2001)
Chanamé & Ivans (in prep.)

10 Constraints on star formation theories
White & Ghez (2001) Clarke (1995) disk instabilities capture core fragmentation “coevality” of binary components favors fragmentation rather than formation in isolation!! Larson (2001)

11  Wide binaries as dynamical probes   M a   , E  0 m a b v Gm
binding energy  E  - Wide binaries as dynamical probes 2a a   , E  0 m a b v M

12  Wide binaries as dynamical probes   M a   , E  0 m a b v Gm
binding energy  E  - Wide binaries as dynamical probes 2a a   , E  0 m 1) b >> a  a 2) condition for destruction: 3) closest encounter: b v M

13  ¡ ! Wide binaries as dynamical probes   M a   , E  0 m a b v Gm
binding energy  E  - Wide binaries as dynamical probes 2a a   , E  0 m 1) b >> a  a 2) condition for destruction: 3) closest encounter: b ! - 4) v M

14 1985: constraints on the nature of (disk) dark matter
Bahcall, Hut, & Tremaine (1985) MDT < 2 M

15 Constraints on the nature of halo dark matter
Kouwenhoven et al. (2010) Yoo, Chanamé, & Gould (2004) PAH: Poveda, Allen, & Hernández (2007) LB: Lépine & Bongiorno (2007) CRC: Close, Richer, & Crabtree (1990) CG: Chanamé & Gould (2004)

16 Wide Binaries: the non-violent end of the semi-major axis distribution
Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries stellar parameters for field stars star formation dynamics and Galactic astronomy

17 Wide Binaries: the non-violent end of the semi-major axis distribution
# of binaries Heggie Bahcall & Soneira ………………………19 Retterer & King ………………………... 11 Latham et al. ……………………………. 6 Bahcall, Hut, & Tremaine Weinberg, Shapiro, & Wasserman Close, Richer, & Crabtree ……………… 39 Wasserman & Weinberg ……………….. 9 Gould, Bahcall, & Maoz ……………….. 13 ………………… HST Chanamé & Gould …………………… ……….... NLTT + 2MASS + USNO-A Yoo, Chanamé, & Gould Lépine & Bongiorno ………………… ……..……… LSPM + Hipparcos Sesar, Ivezić, & Jurić …………….… > ………..…... SDSS + USNO-B Quinn et al. Jiang & Tremaine Longhitano & Binggeli ……………… > …………..…… SDSS Dhital et al. ………………………… ……………… SDSS + USNO-B

18 Wide Binaries: the non-violent end of the semi-major axis distribution
# of binaries Heggie Bahcall & Soneira ………………………19 Retterer & King ………………………... 11 Latham et al. ……………………………. 6 Bahcall, Hut, & Tremaine Weinberg, Shapiro, & Wasserman Close, Richer, & Crabtree ……………… 39 Wasserman & Weinberg ……………….. 9 Gould, Bahcall, & Maoz ……………….. 13 ………………… HST Chanamé & Gould …………………… ……….... NLTT + 2MASS + USNO-A Yoo, Chanamé, & Gould Lépine & Bongiorno ………………… ……..……… LSPM + Hipparcos Sesar, Ivezić, & Jurić …………….… > ………..…... SDSS + USNO-B Quinn et al. Jiang & Tremaine Longhitano & Binggeli ……………… > …………..…… SDSS Dhital et al. ………………………… ……………… SDSS + USNO-B

19 Close pairs on the sky SDSS Sesar, Ivezić, & Jurić (2008) 8  V  12
random 8  V  12 12  V  16

20 Close pairs on the sky Two-point angular correlation function w()
Longhitano & Bingelli (2010) SDSS data f() ~ -

21 1  2 Common proper-motion systems 1950 a  100 AU 2000

22 Luyten (1945-1980)  > 0.18 arcsec/yr NLTT “Reduced Proper Motion”
RPM = V + 5 log() ~ MV “Reduced Proper Motion” diagram NLTT

23 Luyten (1945-1980)  > 0.18 arcsec/yr USNO (1950-2000) BV (plates)
“Reduced Proper Motion” (1998) JHK (CCD) 2MASS RPM = V + 5 log() ~ MV “Reduced Proper Motion” diagram NLTT rNLTT Salim & Gould (2003)

24 rNLTT wide binaries final catalog: 1147 systems 999 genuine pairs
801 disk binaries 116 halo binaries 82 with WD components Chanamé & Gould (2004)

25 rNLTT wide binaries final catalog: 1147 systems 999 genuine pairs
801 disk binaries 116 halo binaries 82 with WD components Chanamé & Gould (2004)

26 SDSS color-mag relations!
Proper motions precise distance information SDSS color-mag relations! Sesar, Ivezić, & Jurić (2008)

27 Proper motions + precise distance information
Dhital et al. (2010) 50" high mass ratio twins WDs / subdwarfs

28 Wide Binaries: the non-violent end of the semi-major axis distribution
Importance of studying wide binaries Identifying wide binaries: methods and catalogs 3. Formation and evolution of wide binaries stellar parameters for field stars star formation dynamics and Galactic astronomy

29 Formation of wide binaries
clustered star formation? dynamical capture in the field?

30 Formation of wide binaries
formation during the dissolution phase of star clusters clustered star formation? dynamical capture in the field? Kouwenhoven et al. (2010)

31 giant molecular clouds
Formation of wide binaries formation during the dissolution phase of star clusters clustered star formation? dynamical capture in the field? Kouwenhoven et al. (2010) Galactic Open Clusters open clusters are destroyed by giant molecular clouds (Binney & Tremaine, Sec.7.2) Wielen (1971) age

32 Formation of wide binaries
formation during the dissolution phase of star clusters clustered star formation? dynamical capture in the field? Kouwenhoven et al. (2010) The Medea/Saturn evolutionary scenario Galactic Open Clusters Wielen (1971) age Delacroix (1862) Goya (1820)

33 Initial distribution of semi-major axes
star forming regions Orion Nebula Cluster Age ~1 Myr 2 Myr 5 Myr f(a) ~ 1/a Kraus & Hillenbrand (2009) Poveda & Allen (2004)

34 Today’s distribution of
semi-major axes SDSS disk binaries!! effect of giant molecular clouds Weinberg, Shapiro, & Wasserman (1987) Wasserman & Weinberg (1991) Jiang & Tremaine (2009) Sesar, Ivezić, & Jurić (2008)

35 ...however, we have systems much wider than 0.1 pc !!!
Chanamé & Gould (2004) 0.1 pc

36 ...however, we have systems much wider than 0.1 pc !!!
Chanamé & Gould (2004) bmin ≥ at M ≥ 103 M excluded allowed 0.1 pc Since binaries with large semimajor axes, a  0.1 pc, are more easily disrupted than those with small ones, any deviation (or lack thereof) from a power-law distribution at wide separations provides a test of halo dark matter models.

37 closest encounter is the all encounters are equally important
bmin >> a  “tidal limit” bmin << a  “Coulomb limit” closest encounter is the most important one all encounters are equally important

38 bmin >> a  “tidal limit” bmin << a  “Coulomb limit”
Bahcall, Hut, & Tremaine (1985)

39 Constraining Halo Dark Matter
Monte Carlo Simulations simple impulse approximation no disk or Galactic tides constant density of perturbers combinations of (M,ρ) of MACHOs

40 Constraining Halo Dark Matter
Monte Carlo Simulations simple impulse approximation no disk or Galactic tides constant density of perturbers combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)

41 Constraining Halo Dark Matter
Monte Carlo Simulations simple impulse approximation no disk or Galactic tides constant density of perturbers combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)

42 Constraining Halo Dark Matter
Monte Carlo Simulations simple impulse approximation no disk or Galactic tides constant density of perturbers combinations of (M,ρ) of MACHOs Yoo, Chanamé, & Gould (2004)

43 Constraining Halo Dark Matter
Chanamé & Gould (2004) Yoo, Chanamé, & Gould (2004) Halo wide binaries exclude MACHOs with M > 43 M at the standard local halo density ρH at the 95% confidence level (2σ)

44 Constraining Halo Dark Matter
Quinn et al. (2009)

45 Constraining Halo Dark Matter
Chanamé & Gould (2004) Quinn et al. (2009)

46 Constraining Halo Dark Matter
Quinn et al. (2009) Yoo, Chanamé, & Gould (2004)

47 Constraining Halo Dark Matter
larger samples of halo binaries understanding the genesis of halo wide binaries more sophisticated modeling Allen, Poveda, & Hernández-Alcántara (2007) Quinn & Smith (2009)   binaries

48 SDSS + USNO-B   4 mas/yr DR7 + USNO-B ~ 3 106 halo stars

49 SDSS + USNO-B   4 mas/yr DR5 + USNO-B ~ 4 106 halo stars
+ distance information

50 Looking for wide binaries in SDSS
MDM 2.4m Chanamé 2010 (in prep.)

51 Looking for wide binaries in SDSS
MDM 2.4m Chanamé 2010 (in prep.)

52 Looking for wide binaries in SDSS
MDM 2.4m Chanamé 2010 (in prep.)

53 Looking for wide binaries in SDSS
MDM 2.4m V  20.5 mag / 20min exptime

54 SUMMARY wide binaries are applicable to a large range of astronomical problems: Galactic structure & evolution fundamental stellar parameters tests of stellar evolution cosmological interest formation of wide binaries likely associated to (young) star cluster dissolution detailed shape of semi-major axis distribution is of fundamental dynamical interest large, clean samples of wide binaries are thus much welcomed (Gaia, LSST, …) more sophisticated modeling will also be required


Download ppt "Wide Binaries: the non-violent end of the semi-major axis distribution"

Similar presentations


Ads by Google