Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rainfall Insurance and Basis Risk

Similar presentations


Presentation on theme: "Rainfall Insurance and Basis Risk"β€” Presentation transcript:

1 Rainfall Insurance and Basis Risk
Professor Tobacman, Li Zheng

2 Overview Definition 1 Definition 2 Reality check
Moving Forward: Empirical Studies

3 Basis Risk Occurs when Payout from indexed insurance
Actual losses experienced do not match.

4 Definition 1 I defined the basis risk facing farmers as:
π΅π‘Žπ‘ π‘–π‘  π‘…π‘–π‘ π‘˜= 𝜎 𝑀 𝑖 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 𝑛 βˆ— π‘–π‘›π‘ π‘’π‘Ÿπ‘Žπ‘›π‘π‘’ π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  𝜎 𝑀 𝑖 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 0 π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  𝑀 𝑖 is the income of the 𝑖 π‘‘β„Ž farmer / state

5 Definition 1 (Continued)
𝑦 𝑖 = πœ‡ 𝑖 + 𝑓 𝑀 +𝑔 βˆ™ + πœ€ 𝑖 πœ€ 𝑖 ~ 𝑁(0, 𝜎 πœ€ 𝑖 2 ) 𝐼 𝑀 = π‘ƒπ‘Žπ‘¦π‘œπ‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘œπ‘›π‘’ π‘π‘œπ‘™π‘–π‘π‘¦ π‘ƒπ‘Ÿπ‘’π‘šπ‘–π‘’π‘š π‘ž=𝐸 𝐼 𝑀 (fair insurance) Variable w here represents the index or indices in question

6 Definition 1 (Continued)
Under 𝑛 insurance policies, 𝑀 𝑖 =𝑝𝐴 𝑦 𝑖 + 𝑛 𝐼 𝑀 βˆ’ π‘ž 𝐸 𝑀 𝑖 =𝑝𝐴 πœ‡ 𝑖 π‘‰π‘Žπ‘Ÿ 𝑀 𝑖 = 𝐴 2 𝑝 2 𝜎 𝑦 𝑖 𝑛 2 𝜎 𝐼(𝑀) 2 + 2𝐴𝑛𝑝 πΆπ‘œπ‘£( 𝑦 𝑖 , 𝐼 𝑀 ) Here A is the area under farming and p is the price per unit yield. It is expected that πΆπ‘œπ‘£ 𝑦 𝑖 , 𝐼 𝑓 <0.

7 Definition 1 (Continued)
With CARA Utility, π‘ˆ 𝑀 𝑖 =𝐸 𝑀 𝑖 βˆ’ 1 2 βˆ…π‘‰π‘Žπ‘Ÿ 𝑀 𝑖 = 𝑝𝐴 πœ‡ 𝑖 βˆ’ 1 2 βˆ… 𝐴 2 𝑝 2 𝜎 𝑦 𝑖 𝑛 2 𝜎 𝐼(𝑀) 2 + 2𝐴𝑛𝑝 πΆπ‘œπ‘£( 𝑦 𝑖 , 𝐼 𝑀 ) βˆ… is the coefficient of risk aversion

8 Definition 1 (Continued)
Maximizing utility with respect to 𝑛 : πœ•(π‘ˆ( 𝑀 𝑖 ) πœ•π‘› =0βˆ’ 1 2 βˆ… 0+ 2 𝑛 βˆ— 𝜎 𝐼(𝑀) 2 + 2𝐴𝑝 πΆπ‘œπ‘£ 𝑦 𝑖 , 𝐼 𝑀 =0 πœ• 2 (π‘ˆ( 𝑀 𝑖 ) πœ• 𝑛 2 =2 𝜎 𝐼(𝑀) 2 >0 βˆ€ 𝑛 Ο΅ 𝐙 0 + 𝑛 βˆ— = βˆ’ 𝐴𝑝 πΆπ‘œπ‘£ 𝑦 𝑖 , 𝐼 𝑀 𝜎 𝐼 𝑀 2 For now we are assuming ability to purchase non-discrete amounts of insurance

9 Definition 1 (Continued)
Under this definition and the expression for 𝑛 βˆ— : π΅π‘Žπ‘ π‘–π‘  π‘…π‘–π‘ π‘˜= 𝜎 𝑀 𝑖 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 𝑛 βˆ— π‘–π‘›π‘ π‘’π‘Ÿπ‘Žπ‘›π‘π‘’ π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  𝜎 𝑀 𝑖 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 0 π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  = 𝐴 2 𝑝 2 𝜎 𝑦 𝑖 (𝑛 βˆ— ) 2 𝜎 𝐼 𝑀 𝐴 𝑛 βˆ— 𝑝 πΆπ‘œπ‘£ 𝑦 𝑖 , 𝐼 𝑀 𝐴 2 𝑝 2 𝜎 𝑦 𝑖 2 =1+ 𝐴 2 𝑝 2 𝜎 𝐼(𝑀) 2 [ πΆπ‘œπ‘£ 𝑦 𝑖 , 𝐼 𝑀 ] 2 𝐴 2 𝑝 2 𝜎 𝑦 𝑖 2 [ 𝜎 𝐼 𝑀 2 ] βˆ’2 𝐴 2 𝑝 2 [ πΆπ‘œπ‘£ 𝑦 𝑖 , 𝐼 𝑀 ] 2 𝐴 2 𝑝 2 𝜎 𝑦 𝑖 2 𝜎 𝐼(𝑀) 2 =1βˆ’ πΆπ‘œπ‘£ 𝑦 𝑖 , 𝐼 𝑀 𝜎 𝑦 𝑖 𝜎 𝐼(𝑀) 2 =1βˆ’ 𝜌 𝑦 𝑖 , 𝐼(𝑀) 2

10 Definition 1 (Continued)
Given this specification of basis risk, one has to maximize 𝜌 𝑦 𝑖 , 𝐼(𝑀) 2 to minimize basis risk. If we assume that rainfall is independent of all other explanatory variables, we will arrive at one obvious candidate for the functional form of 𝐼 𝑀 : 𝐼 𝑀 =π‘Žπ‘“ 𝑀 +𝑏 . I will now show that this functional form is indeed one of the candidates that minimizes this definition of basis risk under independence of rainfall.

11 Definition 1 (Continued)
Under independence of rainfall: 𝜌 𝑦 𝑖 , 𝐼(𝑀) 2 = πΆπ‘œπ‘£ 𝑦 𝑖 , 𝐼 𝑀 𝜎 𝑦 𝑖 𝜎 𝐼(𝑀) 2 = πΆπ‘œπ‘£ 𝑓(𝑀), 𝐼 𝑀 𝜎 𝑦 𝑖 𝜎 𝐼(𝑀) 2 = π‘ŽπΆπ‘œπ‘£ 𝑓(𝑀), 𝑓(𝑀) π‘Ž 𝜎 𝑦 𝑖 𝜎 𝑓(𝑀) 2 = 𝜎 𝑓(𝑀) 2 𝜎 𝑦 𝑖 𝜎 𝑓(𝑀) 2 = 𝜎 𝑓(𝑀) 𝜎 𝑦 𝑖 2 I claim that 𝜎 𝑓(𝑀) 𝜎 𝑦 𝑖 is the maximum value of 𝜌 𝑦 𝑖 , 𝐼(𝑀) 2 .

12 Definition 1 (Continued)
Prove by Contradiction:Β  If βˆƒ πΆπ‘œπ‘£ 𝑓 𝑀 , 𝐼 𝑀 𝜎 𝑦 𝑖 𝜎 𝐼 𝑀 , π‘ π‘’π‘β„Ž π‘‘β„Žπ‘Žπ‘‘: πΆπ‘œπ‘£ 𝑓 𝑀 , 𝐼 𝑀 𝜎 𝑦 𝑖 𝜎 𝐼 𝑀 > 𝜎 𝑓 𝑀 𝜎 𝑦 𝑖 2 πΆπ‘œπ‘£ 𝑓 𝑀 , 𝐼 𝑀 𝜎 𝐼 𝑀 > 𝜎 𝑓 𝑀 2 πΆπ‘œπ‘£ 𝑓 𝑀 , 𝐼 𝑀 2 > 𝜎 𝑓(𝑀) 2 𝜎 𝐼(𝑀) 2 But this violates the Cauchy-Schwarz Inequality.

13 Definition 1 - Assumptions
The above assumes: No interactions between rainfall and other explanatory variables in the model if 𝐼 𝑀 =π‘Žπ‘“ 𝑀 +𝑏 is one of the basis risk minimizing insurance models. Using the definition alone allows for interactions between all explanatory variables. CARA utility functions Ability to purchase non-discrete amounts of insurance policies

14 Definition 1 – Criticisms
Criticisms of the above definition: Too blunt: Does not isolate basis risk due to rainfall. This definition is a measure of risk due to uncompensated exposure to agriculture as a whole, not due to uncompensated exposure due to rainfall. Too pessimistic: Due to its bluntness, it will likely result in overstated levels of basis risk No clear minimum. It is not clear what the benchmark level of basis risk is, and no clear target to work towards. 0 is unrealistic.

15 Definition 1 – Summary What we learnt:
Setting 𝐼 𝑀 =π‘Žπ‘“ 𝑀 +𝑏 is one useful functional form that could minimize basis risk.

16 Definition 2 To increase precision, I defined basis risk as: π΅π‘Žπ‘ π‘–π‘  π‘…π‘–π‘ π‘˜= π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ π‘–π‘›π‘π‘œπ‘šπ‘’ 𝑑𝑒𝑒 π‘‘π‘œ π‘Ÿπ‘Žπ‘–π‘›π‘“π‘Žπ‘™π‘™ π‘’π‘›π‘‘π‘’π‘Ÿ 𝑛 βˆ— π‘–π‘›π‘ π‘’π‘Ÿπ‘Žπ‘›π‘π‘’ π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ π‘–π‘›π‘π‘œπ‘šπ‘’ 𝑑𝑒𝑒 π‘‘π‘œ π‘Ÿπ‘Žπ‘–π‘›π‘“π‘Žπ‘™π‘™ π‘’π‘›π‘‘π‘’π‘Ÿ 0 π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  = 𝜎 𝑀 𝑖 𝑑𝑒𝑒 π‘‘π‘œ π‘Ÿπ‘Žπ‘–π‘›π‘“π‘Žπ‘™π‘™ π‘Žπ‘›π‘‘ π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 𝑛 βˆ— π‘–π‘›π‘ π‘’π‘Ÿπ‘Žπ‘›π‘π‘’ π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  𝜎 𝑀 𝑖 𝑑𝑒𝑒 π‘‘π‘œ π‘Ÿπ‘Žπ‘–π‘›π‘“π‘Žπ‘™π‘™ π‘Žπ‘›π‘‘ π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 0 π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  With this definition, basis risk measures risk from unknown and hence uncompensated exposure due to rainfall in agriculture.

17 Definition 2 (Continued)
Similarly, we define yield and insurance: 𝑦 𝑖 = πœ‡ 𝑖 + 𝑓 𝑀 +𝑔 βˆ™ + πœ€ 𝑖 πœ€ 𝑖 ~ 𝑁(0, 𝜎 πœ€ 𝑖 2 ) 𝐼 𝑀 = π‘ƒπ‘Žπ‘¦π‘œπ‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘œπ‘›π‘’ π‘π‘œπ‘™π‘–π‘π‘¦ π‘ƒπ‘Ÿπ‘’π‘šπ‘–π‘’π‘š π‘ž=𝐸 𝐼 𝑀 We now strictly assume that 𝑔 βˆ™ π‘Žπ‘›π‘‘ 𝑓 𝑀 are independent. Other than that there are no restrictions on the functional form of the yield model.

18 Definition 2 (Continued)
Intuitively, we expect that all known relationships between rainfall and yield would have been factored into the ideal insurance policy (i.e. compensated). Thus we suspect that: π΅π‘Žπ‘ π‘–π‘  π‘…π‘–π‘ π‘˜= 𝜎 πœ€ 𝑖 𝜎 𝑓(𝑀) 2 + 𝜎 πœ€ 𝑖 2 Indeed, using similar methods and assumptions as above we arrive at our intuition.

19 Definition 2 (Continued)
To increase precision, we only consider income due to contribution of rainfall and unknown factors (error terms). Denote this income as 𝑀 𝑅𝑖 , and the corresponding yield 𝑦 𝑅𝑖 Under 𝑛 insurance policies, 𝑦 𝑅𝑖 = πœ‡ 𝑖 + 𝑓 𝑀 +𝑔 βˆ™ + πœ€ 𝑖 =𝑓 𝑀 + πœ€ 𝑖 𝑀 𝑅𝑖 =𝑝𝐴 𝑦 𝑅𝑖 + 𝑛 𝐼 𝑀 βˆ’ π‘ž 𝐸 𝑀 𝑅𝑖 =𝑝𝐴𝐸[𝑓 𝑀 ] π‘‰π‘Žπ‘Ÿ 𝑀 𝑅𝑖 = 𝐴 2 𝑝 2 𝜎 𝑦 𝑅𝑖 𝑛 2 𝜎 𝐼(𝑀) 2 + 2𝐴𝑛𝑝 πΆπ‘œπ‘£( 𝑦 𝑅𝑖 , 𝐼 𝑀 )

20 Definition 2 (Continued)
With CARA preferences: π‘ˆ 𝑀 𝑅𝑖 =𝐸 𝑀 𝑅𝑖 βˆ’ 1 2 βˆ…π‘‰π‘Žπ‘Ÿ 𝑀 𝑅𝑖 = 𝑝𝐴 𝛽 𝑖 𝐸[𝑓 𝑀 ] βˆ’ 1 2 βˆ… 𝐴 2 𝑝 2 𝜎 𝑦 𝑅𝑖 𝑛 2 𝜎 𝐼(𝑀) 2 + 2𝐴𝑛𝑝 πΆπ‘œπ‘£( 𝑦 𝑅𝑖 , 𝐼 𝑀 )

21 Definition 2 (Continued)
Maximizing utility by solving for 𝑛 βˆ— : πœ•(π‘ˆ( 𝑀 𝑅𝑖 ) πœ•π‘› =0βˆ’ 1 2 βˆ… 0+ 2 𝑛 βˆ— 𝜎 𝐼(𝑀) 2 + 2𝐴𝑝 πΆπ‘œπ‘£ 𝑦 𝑅𝑖 , 𝐼 𝑀 =0 πœ• 2 (π‘ˆ( 𝑀 𝑅𝑖 ) πœ• 𝑛 2 =2 𝜎 𝐼(𝑀) 2 >0 βˆ€ 𝑛 Ο΅ 𝐙 0 + 𝑛 βˆ— = βˆ’ 𝐴𝑝 πΆπ‘œπ‘£ 𝑦 𝑅𝑖 , 𝐼 𝑀 𝜎 𝐼(𝑀) 2 Again, we ignore discretized purchase requirements in reality.

22 Definition 2 (Continued)
Under this definition and the expression for 𝑛 βˆ— : π΅π‘Žπ‘ π‘–π‘  π‘…π‘–π‘ π‘˜= 𝜎 𝑀 𝑅𝑖 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 𝑛 βˆ— π‘–π‘›π‘ π‘’π‘Ÿπ‘Žπ‘›π‘π‘’ π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  𝜎 𝑀 𝑅𝑖 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 0 π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  = 𝐴 2 𝑝 2 𝜎 𝑦 𝑅𝑖 (𝑛 βˆ— ) 2 𝜎 𝐼 𝑀 𝐴 𝑛 βˆ— 𝑝 πΆπ‘œπ‘£ 𝑦 𝑅𝑖 , 𝐼 𝑀 𝐴 2 𝑝 2 𝜎 𝑦 𝑅𝑖 2 =1+ 𝐴 2 𝑝 2 𝜎 𝐼(𝑀) 2 [ πΆπ‘œπ‘£ 𝑦 𝑅𝑖 , 𝐼 𝑀 ] 2 𝐴 2 𝑝 2 𝜎 𝑦 𝑅𝑖 2 [ 𝜎 𝐼 𝑀 2 ] βˆ’2 𝐴 2 𝑝 2 [ πΆπ‘œπ‘£ 𝑦 𝑅𝑖 , 𝐼 𝑀 ] 2 𝐴 2 𝑝 2 𝜎 𝑦 𝑅𝑖 2 𝜎 𝐼(𝑀) 2 =1βˆ’ πΆπ‘œπ‘£ 𝑦 𝑅𝑖 , 𝐼 𝑀 𝜎 𝑦 𝑅𝑖 𝜎 𝐼(𝑀) 2 =1βˆ’ 𝜌 𝑦 𝑅𝑖 , 𝐼(𝑀) 2

23 Definition 2 (Continued)
It is not unreasonable to assume that all known relationships are modeled into the insurance. Taking the clue from the first definition, we set : 𝐼 𝑀 =π‘Žπ‘“ 𝑀 +𝑏. π΅π‘Žπ‘ π‘–π‘  π‘…π‘–π‘ π‘˜= 1βˆ’ πΆπ‘œπ‘£ 𝑦 𝑅𝑖 , 𝐼 𝑀 𝜎 𝑦 𝑅𝑖 𝜎 𝐼 𝑀 =1βˆ’ πΆπ‘œπ‘£ 𝑓 𝑀 + πœ€ 𝑖 , π‘Žπ‘“ 𝑀 +𝑏 𝜎 𝑓 𝑀 + πœ€ 𝑖 𝜎 π‘Žπ‘“ 𝑀 +𝑏 2 = 1βˆ’ π‘ŽπΆπ‘œπ‘£ 𝑓 𝑀 , 𝑓 𝑀 π‘Ž 𝜎 𝑓 𝑀 𝜎 πœ€ 𝑖 𝜎 𝑓 𝑀 =1βˆ’ 𝜎 𝑓 𝑀 𝜎 𝑓 𝑀 𝜎 πœ€ 𝑖 𝜎 𝑓 𝑀 = 1βˆ’ 𝜎 𝑓 𝑀 𝜎 𝑓 𝑀 𝜎 πœ€ 𝑖 =1βˆ’ 𝜎 𝑓 𝑀 2 𝜎 𝑓 𝑀 𝜎 πœ€ 𝑖 = 𝜎 πœ€ 𝑖 𝜎 𝑓(𝑀) 2 + 𝜎 πœ€ 𝑖 2 Hence we see that we are back with our intuition.

24 Definition 2 - Assumptions
The above assumes: No interactions between rainfall and other explanatory variables in the model. CARA utility functions Ability to purchase non-discrete amounts of insurance policies Although subject to the stricter assumptions as the first definition, we now know that the minimum basis risk is 0.

25 Comparison of the 2 Definitions
Definition 1 Definition 2 Pros Probably more relevant to farmers Clear benchmark: 0 Cons No clear benchmark Ignores overall impact on income

26 Reality Check If we had defined basis risk to be risk from understood exposure to rainfall, we expect that an insurance model that incorporates this understood exposure to reduce such rainfall risks to zero. π΅π‘Žπ‘ π‘–π‘  π‘…π‘–π‘ π‘˜ = π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ π‘–π‘›π‘π‘œπ‘šπ‘’ 𝑑𝑒𝑒 π‘‘π‘œ π‘’π‘›π‘‘π‘’π‘Ÿπ‘ π‘‘π‘œπ‘œπ‘‘ π‘Ÿπ‘Žπ‘–π‘›π‘“π‘Žπ‘™π‘™ π‘’π‘›π‘‘π‘’π‘Ÿ 𝑛 βˆ— π‘–π‘›π‘ π‘’π‘Ÿπ‘Žπ‘›π‘π‘’ π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ π‘–π‘›π‘π‘œπ‘šπ‘’ 𝑑𝑒𝑒 π‘‘π‘œ π‘’π‘›π‘‘π‘’π‘Ÿπ‘ π‘‘π‘œπ‘œπ‘‘ π‘Ÿπ‘Žπ‘–π‘›π‘“π‘Žπ‘™π‘™ π‘’π‘›π‘‘π‘’π‘Ÿ 0 π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  = 𝜎 𝑀 𝑖 𝑑𝑒𝑒 π‘‘π‘œ π‘’π‘›π‘‘π‘’π‘Ÿπ‘ π‘‘π‘œπ‘œπ‘‘ π‘Ÿπ‘Žπ‘–π‘›π‘“π‘Žπ‘™π‘™ 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 𝑛 βˆ— π‘–π‘›π‘ π‘’π‘Ÿπ‘Žπ‘›π‘π‘’ π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘  𝜎 𝑀 𝑖 𝑑𝑒𝑒 π‘‘π‘œ π‘’π‘›π‘‘π‘’π‘Ÿπ‘ π‘‘π‘œπ‘œπ‘‘ π‘Ÿπ‘Žπ‘–π‘›π‘“π‘Žπ‘™π‘™ 2 | π‘’π‘›π‘‘π‘’π‘Ÿ 0 π‘π‘œπ‘™π‘–π‘π‘–π‘’π‘ 

27 Reality Check Using similar methods as above, defining the income due to understood rainfall as 𝑦 𝑅𝑖 =𝑓 𝑀 , we arrive at: π΅π‘Žπ‘ π‘–π‘  π‘…π‘–π‘ π‘˜= 1βˆ’ πΆπ‘œπ‘£ 𝑓 𝑀 , 𝐼 𝑀 𝜎 𝑓 𝑀 𝜎 𝐼 𝑀 =0 when we set : 𝐼 𝑀 =π‘Žπ‘“ 𝑀 +𝑏.

28 Moving Forward – Empirics
A. Measure Historical basis risk using Definitions 1 and 2 Need data on rainfall and yields APHRODITE data set for rainfall data β€œIndia Agricultural and Climate Data Set” (IACDS) prepared by Apurva Sanghi, K.S. Kavi Kumar, and James W. McKinsey, Jr. * Yield modeling With and without interactions Begin with basic forms, then try parametric modeling *The IACDS provides information on agricultural yields and prices for 20 major and minor crops, for each of 270 districts in India, from 1956 to Based on this information, an area-weighted average revenue per unit area was calculated as a proxy for farmer’s revenue per unit area.

29 Moving Forward – Empirics
B. Model Historical Basis Risk using current insurance models Start with unitary period model (definitions 1 and 2) Allow for non CARA utility and test robustness of current definitions. Using the growth phase policies from the term sheets, estimate historical basis risk under Ideal 𝑛 βˆ— Discretized ceiling / floor of 𝑛 βˆ— Once theory arrives incorporate multiple phases Compare with basis risk minimizing model of insurance

30 Moving Forward – Empirics
C. Model Historical Basis Risk using new insurance models Allow for assumption of non-optimal 𝑛 βˆ— due to demand side factors, test robustness of definitions with respect to 𝑛 βˆ— Allow for non CARA utility

31 Summary Stats for Data Statistics / States State 1 State 2 State 3
Mean Rainfall Variance of Rainfall State Mean / Country Mean State Variance / Country Variance Mean Monsoon Rainfall (Area weighted) Mean Monsoon Rainfall (Population weighted) Variance of Monsoon Rainfall Monsoon Start Period Monsoon End Period Major Crops Average Yield (area weighted)

32 Models with no Covariates and no Interactions
Model 1 Model 2 Model 3 Model 4 f(w) Linear Quadratic Parametric g(x) Omitted h(w,x) R^2 Basis Risk Definition 1 – n=0 Basis Risk Definition 2 – n=0 Historic Insurance Specification Basis Risk Definition 1 – continuous n* Basis Risk Definition 2 – continuous n* Basis Risk Definition 1 –discrete n* Basis Risk Definition 2 – discrete n* Alternative Insurance Specification 1 phases 3 phases

33 Models with Covariates and no Interactions
Model 1 Model 2 Model 3 Model 4 f(w) Linear Quadratic g(x) h(w,x) Omitted R^2 Basis Risk Definition 1 – n=0 Basis Risk Definition 2 – n=0 Historic Insurance Specification Basis Risk Definition 1 – continuous n* Basis Risk Definition 2 – continuous n* Basis Risk Definition 1 –discrete n* Basis Risk Definition 2 – discrete n* Alternative Insurance Specification 1 phases 3 phases

34 Models with Covariate and Interactions
Model 1 Model 2 Model 3 Model 4 f(w) Linear Quadratic g(x) h(w,x) R^2 Basis Risk Definition 1 – n=0 Basis Risk Definition 2 – n=0 Historic Insurance Specification Basis Risk Definition 1 – continuous n* Basis Risk Definition 2 – continuous n* Basis Risk Definition 1 –discrete n* Basis Risk Definition 2 – discrete n* Alternative Insurance Specification 1 phases 3 phases

35 Summary 2 Definitions of basis risk Moving Forward: Empirics

36 Acknowledgments Professor Tobacman for his unending patience, understanding, guidance and support. Professor Cole, Daniel Stein and many more with providence of key data


Download ppt "Rainfall Insurance and Basis Risk"

Similar presentations


Ads by Google