Presentation is loading. Please wait.

Presentation is loading. Please wait.

Formal Design Review Team 1.

Similar presentations


Presentation on theme: "Formal Design Review Team 1."— Presentation transcript:

1 Formal Design Review Team 1

2 PROJECT INTRODUCTION Pick and place robot
Pick up, move, and release spheres into specified drop holes Steel spheres - ∅ 12.7 mm Drop holes - ∅ 14.3 mm Rotary movement on two serially stacked axes Stepper motors & Arduino Uno R3 Lifts/lowers spheres with permanent magnet grasping device Servo motor

3 Team 1 Introduction Avery Callahan Hung Pham Kaitlin McNeill
Mike Wagner Trenton Madden

4 MECHANISM INTRODUCTION
x y z BASE (Red)

5 MECHANISM INTRODUCTION
ROTARY AXIS 1 (Green) x y z

6 MECHANISM INTRODUCTION
ROTARY AXIS 2 (Yellow) x y z

7 MECHANISM INTRODUCTION
GRIPPER ASSEMBLY (Blue) x y z

8 MECHANISM INTRODUCTION
CONTROL (Purple) x y z

9 BASE - Configuration Rotary Axis Mount Material: ABS Plastic
Density of ABS: g/mm^3 Total Volume of Base: 155,892 mm^3 Total Mass of Base: 165 grams Sphere Plate Sphere Plate Rotary Axis Mount x y z z x y

10 BASE - Rotary Axis Mount
Deflection P x y z

11 BASE - Rotary Axis Mount
Plastic Failure P x y z

12 BASE - Sphere Plate Deflection x y z

13 BASE - Sphere Plate Plastic Failure x y z

14 ROTARY AXIS 1 ROTARY AXIS 1 (Green) x y z x y z

15 ROTARY AXIS 1 Deflection x y z

16 ROTARY AXIS 1 Tilt Deflection

17 ROTARY AXIS 1 Plastic Failure x y z

18 Note: ABS will be used to make Rotary Axis 1.
200 mm 160 mm Belt and Timing Gears Note: ABS will be used to make Rotary Axis 1.

19 ROTARY AXIS 1 60T Drive: Stepper Motor & Timing Belt System
Timing Gear Ratio: 1:4 Gear Pitch: 0.08”

20 ROTARY AXIS 1 Control Surfaces: 4 Radial Ball Bearings MS 1
Thrust Bearing Roller Bearing MS 1 Control Surfaces: 4 Radial Ball Bearings & 1 Thrust Ball Bearing Initial Orientation Determined by Micro Switch 1 Radial Ball Bearing Thrust Ball Bearing

21 Force of Arm 2 + Gripper Assembly
ROTARY AXIS 1 Force of Arm 2 + Gripper Assembly Calculated Torque Requirement: 0.025N-m Estimated Motor Torque: N-m (NEMA-23) ½ stall torque Motor Resolution for NEMA-23: 1.8 degrees/step Calculated Resolution Requirement: degrees/step Resolution has increased because of the gear ratio. This gives us an uncertainty of approx Radians.

22 ROTARY AXIS 1 Stepper stall torque (5V): 0.3883 N-m 0.1942 N-m
No-load speed (5V): 150 RPM Calculated Torque Requirement: 0.048N-m NEMA-23

23 ROTARY AXIS 2 ROTARY AXIS 2 (Yellow) x y z

24 ROTARY AXIS 2 Deflection x y z

25 ROTARY AXIS 2 Plastic Failure x y z

26 ROTARY AXIS 2 Tilt Deflection

27 Note: ABS will be used to make Rotary Axis 2.
135 mm mm Belt and Timing Gears Note: ABS will be used to make Rotary Axis 2.

28 ROTARY AXIS 2 Drive: Stepper Motor & Timing Pulley System Motor 2
Timing Pulley Ratio: 1:4 Pitch of Gear Mechanism: 0.08” Motor 2 60 T 15 T

29 ROTARY AXIS 2 Control Surfaces: 2 Radial Ball Bearings & 1 Thrust Ball Bearing Initial Orientation Determined by Micro Switch 2 Roller Bearing Radial Ball Bearing Thrust Ball Bearing Thrust Bearing MS 2

30 ROTARY AXIS 2 Force of Gripper Calculated Torque Requirement: 0.009 Nm
Estimated Motor Torque: 0.07 Nm (NEMA-14) ½ stall torque Motor Resolution for NEMA-14: 1.8 degrees/step Calculated Resolution Requirement: 0.45 degrees/step Resolution has increased because of the gear ratio. This gives us an uncertainty of approx Radians.

31 Stepper stall torque (5V): 0.1412 N-m
ROTARY AXIS 2 Stepper stall torque (5V): N-m N-m No-load speed (5V): 150 RPM NEMA-14 Calculated Torque Requirement: 0.02 Nm

32 GRIPPER ASSEMBLY GRIPPER ASSEMBLY (Blue) x y z

33 Note: ABS will be used to make the Gripper Assembly
Motor Mount Pinion Note: ABS will be used to make the Gripper Assembly 20 kg Servo Rack Housing

34 Force required to separate the sphere from magnet:
GRIPPER ASSEMBLY Force required to separate the sphere from magnet: Fmotor Frack x y z Fmagnet Fsphere

35 GRIPPER ASSEMBLY R x y z

36 GRIPPER ASSEMBLY

37 GRIPPER ASSEMBLY Total Deflection

38 GRIPPER ASSEMBLY Plastic Failure

39 GRIPPER ASSEMBLY Drive: Servo Motor + Rack & Pinion System
Total Mass: g Calculated Torque Requirement: 0.27 Nm SF of 2.5 Estimated Motor Torque: 0.93 Nm (20kg Servo Motor) Motor Resolution: 10 Bit or 1024 PPR

40 4 mm x 4 mm Neodymium Magnet
GRIPPER ASSEMBLY 4 mm x 4 mm Neodymium Magnet Pull Force of Magnet = 10.7 N 20 kg Servo Motor

41 Servo stall torque (5V): 1.86 N-m
GRIPPER ASSEMBLY Servo stall torque (5V): 1.86 N-m 0.93 N-m No-load speed (5V): 62.5 RPM 20 kg Servo Motor Calculated Torque Requirement: 0.27 Nm

42 CONTROL CONTROL (Purple) x y z

43 CONTROL Arduino Uno R3 Computer Power IDE Arduino Motor Shield v2.3
2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons

44 CONTROL Arduino Uno R3 Computer Power IDE Arduino Motor Shield v2.3
2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons Arduino Board

45 CONTROL Computer Arduino Uno R3 Power IDE Arduino Motor Shield v2.3
2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons Computer: USB

46 CONTROL Power Arduino Uno R3 Computer IDE Arduino Motor Shield v2.3
2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons Operates at 5V 1.2 Amps per bridge

47 CONTROL IDE Arduino Uno R3 Computer Power Arduino Motor Shield v2.3
2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons

48 CONTROL IDE Arduino Uno R3 Computer Power Arduino Motor Shield v2.3
2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons

49 CONTROL IDE #Include <libraries> <AFMotor.h>
<Servo.h> Int variables pinButton1 = Input pin of button 1; pinButton2 = Input pin of button 2; SwitchPin1 = Input pin of switch 1; SwitchPin2 = Input pin of switch 2; AF_Stepper motor1(steps/rev, Port); AF_Stepper motor2(steps/rev, Port); Servo servo1; Val1 = 11; Val2 = 11; loop = 0; Arduino Uno R3 Computer Power IDE Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons

50 CONTROL IDE Void setup() { Arduino Uno R3 Servo1.attach(pin); Computer
Power IDE Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons Void setup() { Servo1.attach(pin); motor1.setspeed(speed); motor2.setspeed(speed); } Void loop() { Int statebutton1 == digitalRead(pinButton1); Int statebutton2 == digitalRead(pinButton2); If (statebutton1 == 1) { Val1 = 0; Val2 = 0; }

51 CONTROL IDE If (Val1 <10) { Arduino Uno R3
Computer Power IDE Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons If (Val1 <10) { motor1.step(# step,direction,SINGLE); delay(50); Val1 = analogRead(switchPin1); } If (Val2 <10) { motor2.step(# step,direction,SINGLE); Val2 = analogRead(switchPin2); }

52 CONTROL IDE If (statebutton2 == 1) { Arduino Uno R3 loop = 1; }
Computer Power IDE Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons If (statebutton2 == 1) { loop = 1; } If (loop = 1) { motor1.step(step,direction,SINGLE); delay(1000); motor2.step(step,direction,SINGLE); delay(1000); Servo1.write(180);delay(1000); Servo1.write(90);delay(1000); Servo1.write(0);delay(1000); REPEAT FOR REMAINING SPHERES

53 CONTROL Arduino Motor Shield v2.3 Arduino Uno R3 Computer Power IDE
2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons

54 CONTROL 2 Stepper Motors Uni-polar Arduino Uno R3 Computer Power IDE
Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons 6 wires 2 windings Must find common and ground

55 CONTROL 2 Stepper Motors Bi-polar Arduino Uno R3 Computer Power IDE
Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons 4 wires 2 windings No ground

56 CONTROL 1 Arduino Servo Motor Arduino Uno R3 Computer Power IDE
Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons Yellow: Signal/control Red:Power Black: Ground

57 CONTROL 2 Micro Switches Arduino Uno R3 Computer Power IDE
Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons Yellow(NO): Signal Red(C): Power Black: Ground Pull down resistor

58 CONTROL 2 Push Buttons Arduino Uno R3 Computer Power IDE
Arduino Motor Shield v2.3 2 Stepper Motors Uni-polar Bi-polar 1 Arduino Servo Motor 2 Micro Switches 2 Push Buttons Red: Power Black: Ground Pull-down resistor Yellow/Green: Signal

59 SYSTEM

60 SYSTEM Z y X Step resolution is increased from 1.8 degrees/step on the motor shaft to .45 degrees/step via [1:4] gear ratio This allows for high accuracy for sphere acquisition and release to target locations

61 SYSTEM

62 SYSTEM Z y X The change in (x,y) with one step of each motor with a resolution of .45 degrees/step ΔX = 2.7 [mm] ΔY = 0.5 [mm]

63 SYSTEM Z y X Homing switches reside directly on the Y-axis and serve as the robots home position This defines the (0,0) position of the coordinate plane

64 RAPID PROTOTYPING Upload solid model into Catalyst Pack model

65 RAPID PROTOTYPING Determine Model Material Support Material Run Time
Cost

66 RAPID PROTOTYPING Determine Model Material Support Material Run Time
Cost

67 RAPID PROTOTYPING Determine Model Material Support Material Run Time
Cost

68 RAPID PROTOTYPING Determine Model Material Support Material Run Time
Cost

69 RAPID PROTOTYPING

70 MECHANISM MANUFACTURABILITY

71 BUDGET - Design DESIGN AND ANALYSIS Subsystem Teammate Time (Hours)
Hourly Rate Total Cost Entire System Christina Avery Callahan 69 $10.00 $690.00 Trenton Madden 107 $1,070.00 Hung Pham 66 $660.00 Kaitlin McNeill 56 $560.00 Michael Wagner 46 $460.00

72 Cost of Parts and Supplies
BUDGET - Base Cost of Parts and Supplies

73 BUDGET - Base Cost of Labor

74 Cost of Parts and Supplies
BUDGET - Rotary Axis 1 Cost of Parts and Supplies

75 BUDGET - Rotary Axis 1 Cost of Labor

76 Cost of Parts and Supplies
BUDGET - Rotary Axis 2 Cost of Parts and Supplies

77 BUDGET - Rotary Axis 2 Cost of Labor

78 BUDGET - Gripper Assembly
Cost of Parts and Supplies

79 BUDGET - Gripper Assembly
Cost of Labor

80 Cost of Parts and Supplies
BUDGET - Control Cost of Parts and Supplies

81 BUDGET - Control Cost of Labor

82 BUDGET - Total Total Parts Cost $457.77 Total Labor Costs $4,560.00
Projected Robot Cost $5,017.77

83 SUMMARY AND FUTURE PLAN

84

85 QUESTIONS?


Download ppt "Formal Design Review Team 1."

Similar presentations


Ads by Google