Download presentation
Presentation is loading. Please wait.
Published byDale Butler Modified over 6 years ago
1
Neutrino Masses, Double Beta Decay and Nuclear Structure
ECT*(Trento), Doctoral Training Program on “Neutrinos in Nuclear, Particle- and Astrophysics”. Amand Faessler, University of Tuebingen,
2
CONTENTS: 0. History of the Neutrinos (Introduction)
1. Neutrino Properties 2. The See-Saw Model 3. The Single Beta Decay 4. The Neutrinoless Double Beta Decay 5. The Quasi-Particle Random Phase Approximation (QRPA) 6. Comparison of QRPA, Shell Model, Projected Hartree Fock Bogoliubov (PHBF), Interacting Boson Model 2 7. Can one measure with Charge Transfer Reactions the 0nbb-Matrix element? 8. Competing Mechanisms for the 0nbb 9. The Heidelberg-Moscow data and the Neutrino Mass FAESSLER; Trento 2011
3
0. History of the Neutrinos
1930 Pauli‘s invention of the neutrino 1955 Reines and Cowen detection of the electron neutrino ne 1962 Brookhaven; detection of muon neutrino nm 2000 Fermi Lab; detection of tau neutrino nt 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay 1986 Santa Barbara (Caldwell) detection of 2nbb. 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011
4
Sehr geehrte radioaktiven
Damen und Herren: Invention of the Neutrino in a letter from Zuerich to Tuebingen on December 4th, 1930: Conservation of Energy and Angular momentum. FAESSLER; Trento 2011
5
History of the Neutrinos
1930 Pauli‘s invention of the neutrino 1955 Reines and Cowen detection of the electron neutrino ne 1962 Brookhaven; detection of muon neutrino nm 2000 Fermi Lab; detection of tau neutrino nt 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay 1986 Santa Barbara detection of 2nbb decay 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011
6
Reines and Cowen at the Neutrino-Experiment (at Savannah River Reactor)
Fissions of Uranium143 produces neutron rich fragments. Beta decay: n p + e- + nec FAESSLER; Trento 2011
7
History of the Neutrinos
1930 Pauli‘s invention of the neutrino 1955 Reines and Cowen detection of the electron neutrino ne 1962 Brookhaven; detection of muon neutrino nm p- m- + ncm; ncm + p n + m+ (no: e+) 2000 Fermi Lab; detection of tau neutrino nt 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay 1986 Santa Barbara: 2nbb decay by Caldwell 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011
8
1. Neutrino properties: What is the Mass of the Neutrino ?
mne Mass measurement in the single beta decay nm and nt ? Si mni from cosmology mne from the neutrinoless double beta decay FAESSLER; Trento 2011
9
For the Triton Te [keV] (Te - Q) [eV] antineutrino
FAESSLER; Trento 2011
10
Mass of the Electron Neutrino? Tritium decay (Mainz + Troitsk)
With: FAESSLER; Trento 2011
11
Upper Limit of the Neutrino Mass:
< (2.2 eV)2 ; 95% conf. limit 5 % 95 % (2.2 eV)2 mnb2 FAESSLER; Trento 2011
12
A dinosaur on trip KATRIN Spectrometer tank on the way from the Rhine to the FZ Karslsruhe FAESSLER; Trento 2011
13
Mass of nm (Paul Scherrer Institut 1996):
FAESSLER; Trento 2011
14
Mass of tau Neutrino ARGUS (DESY Hamburg) e+ + e- t+ + t-;
mnt < 28 MeV by ALEPH mnt < 15 MeV together FAESSLER; Trento 2011
15
Neutrino Mass from Astrophysics:
Density Distribution of Matter in the Universe (Power Spectrum of Matter Distribution) Hubble law: v = H0 *Distance = h*100 [km/(sec*Mpc)] *Distance [Mpc] = 71[km/(sec*Mpc)]*Distance [Mpc]; h=0.71; Hubble Constant: H0 = 71 [km/sec*Mpc] FAESSLER; Trento 2011
16
k = 2p/l [(h=0.71)/ Mpc] FAESSLER; Trento 2011
17
W0 = WL= 0.66 Wb= 0.04 H0 = ns = 0.94 Wn = 0 0.01 FAESSLER; Trento 2011
18
W0 = WL= 0.66 Wb= 0.04 H0 = ns = 0.94 Wn = 0.05 0.01 FAESSLER; Trento 2011
19
W0 = WL= 0.66 Wb= 0.04 H0 = ns = 0.94 Wn = 0.25 0.01 FAESSLER; Trento 2011
20
FAESSLER; Trento 2011
21
WMAP = Wilkinson Microwave Anisotropy Probe.
ACBAR = Arcminute Cosmology Bolometer Array Receiver (Berkeley) CBI = Cosmic Background Imager (CALTEC) 2dFGRS = 2 degree Field Galaxy Redshift Survey FAESSLER; Trento 2011
22
Page 1 FAESSLER; Trento 2011
23
2. The See-Saw Model Diagonalise the matrix: FAESSLER; Trento 2011
24
3. The Single Beta Decay W- p e nc p e n n n -1/( MW2 )d(r12)
1/(q2 – MW2 ) n n n FAESSLER; Trento 2011
25
Page 17 FAESSLER; Trento 2011
26
4. Neutrino Mass from Neutrinoless Double Beta Decay
The neutrinoless Double Beta Decay is forbidden in the Standard Model. Allowed in GUT‘s and SUSY. It determines the absolute mass of Majorana Neutrinos. Matrix elements as important as the data. Practically all Grand Unified Theories and Supersymmetry request massive Majorana Neutrinos FAESSLER; Trento 2011
27
Oνββ-Decay (forbidden in Standard Model)
only for massive Majorana Neutrinos ν = νc P P Left ν Phase Space 106 x 2νββ Left n n FAESSLER; Trento 2011
28
GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass:
FAESSLER; Trento 2011
29
P P ν e- e- ν L/R l/r 2*2*2 = 8 posibilities n n FAESSLER; Trento 2011
30
8x8x2 = 128 contributions light ν heavy N Neutrinos p p e- e- n n l/r
W n n P light ν heavy N Neutrinos P ν l/r n l/r 8x8x2 = 128 contributions n FAESSLER; Trento 2011
31
Theoretical Description of Nuclei: Vadim Rodin, Fedor Simkovic, Amand Faessler, Saleh Yousef, D.-L. Fang k 0+ P P e2 k 1+ e1 k 2- ν Ek n n Ei 0+ 0+ 0νββ FAESSLER; Trento 2011
32
Neutrinoless Double Beta-
Decay Probability FAESSLER; Trento 2011
33
5. The best choice: Quasi-Particle Random Phase Approximation (QRPA) and Shell Model
QRPA starts with Pairing: FAESSLER; Trento 2011
34
Effective Majorana Neutrino-Mass for the 0nbb-Decay
Tranformation from Mass to Flavor Eigenstates CP Time reversal CPT = I FAESSLER; Trento 2011
35
FAESSLER; Trento 2011
36
Page 25b FAESSLER; Trento 2011
37
2011 FAESSLER; Trento 2011
38
From Dirac to Majorana Neutrinos
DIRAC NEUTRINOS: Majorana Neutrinos: FAESSLER; Trento 2011
39
Neutrino Masses Depends on Cosmological models (Hannestad)
Single Beta Decay (Mainz, Troisk) Double Beta Decay Majorana Mass (Tübingen): Astophysics: S = m1 + m2 + m3 < 0.17 to 2.0 [eV] Depends on Cosmological models (Hannestad) < 2.2 [eV] < 0.27 [eV] FAESSLER; Trento 2011
40
Page 26 FAESSLER; Trento 2011
41
FAESSLER; Trento 2011
42
PMNS-Matrix Parameters 2011
Pontecorvo-Maki-Nakagawa-Sakata Solar: Atmospheric: Reactor FAESSLER; Trento 2011
43
Results from Oscillations: No Hierarchy, no absolute Mass Scale
(Bild) Fogli, Lisi, Marrone, Palazzo: Prog. Part. Nucl. Phys. 57(2006)742; Data 2011 Sequence 1-2 fixed by oscillations in the sun and in vacuum. No oscillations 13 for solar neutrinos observed,
44
Effective Majorana Neutrino-Mass for the 0nbb-Decay
Tranformation from Mass to Flavor Eigenstates CP Time reversal CPT = I CP = T= K FAESSLER; Trento 2011
45
Normal Hierarchy: Double Beta Decay Majorana Mass mbb versus lowest mass m1
46
Inverted Hierarchy: Double Beta Decay Majorana Mass mbb versus lowest mass m3
FAESSLER; Trento 2011
47
Amand Faessler, Tuebingen
6. Different Methods for the 0nbb-Matrix Elements for the Light Majorana Neutrino Exchange. A. Escuderos, A. Faessler, V. Rodin, F. Simkovic, J. Phys. G37 (2010) ; arXiv: [nucl-th] Quasi-Particle Random Phase Approximation (QRPA; Tübingen). Shell Model (Strasbourg-Madrid). Angular Momentum Projected Hartee-Fock-Bogoliubov (Tuebingen; P. K. Rath et al.). Interacting Boson Model (Barea and Iachello). Amand Faessler, Tuebingen
48
Neutrinoless Double Beta-
Decay Probability FAESSLER; Trento 2011
49
Amand Faessler, Tuebingen
QRPA all the Ring diagrams: Ground State (Exercise IV.5): 0, 4, 8, 12 , … quasi- particles (seniority) b) The Shell Model Ground state: 0, 4, 6, 8, …. Problem for SM: Size of the Single Particle Basis. Amand Faessler, Tuebingen
50
Amand Faessler, Tuebingen
Additive Contributions of 0, 4, 6, … Quasi-Particle States in the SM (Poves et al.). 128Te Not in QRPA 82Se Increasing Admixtures in the Ground State Amand Faessler, Tuebingen
51
Basis Size Effect for 82Se82Kr on the Neutrinoless Double Beta Decay.
4levels (Shell Model): 1p3/2, 0f5/2, 1p3/2, 0g9/2 4levels: Ikeda Sum rule 50 %; 5 levels: 60 % 6levels: 0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2 9levels:0f7/2, 1p3/2, 0f5/2, 1p3/2, 0g9/2, 0g7/2, 1d5/2, 2s1/2, 1d3/2 Amand Faessler, Tuebingen
52
GT Contrib. of different Angular Momenta Neutron Pairs to the 0nbb Decay.
A Comparison QRPA (TUE) and Shell Model (Madrid) with the same Basis. 82Se; 2p3/2, 1f5/2, 2p1/2, 1g9/2 130Te; 1g7/2, 2d5/2, 2d3/2, 3s1/2,1h11/2 Amand Faessler, Tuebingen
53
Amand Faessler, Tuebingen
Contributions of different Angular Momentum and Parity Neutron Pairs to the Matrix Elements of 0nbb Decay in QRPA for 76Ge, 100Mo and 130Te. QRPA QRPA Amand Faessler, Tuebingen
54
Contribution of Higher Angular Momentum Pairs in Projected HFB.
HFB 0bbn Only even Angular Momentum Pairs with Positive Parity can contribute. IBM: = 0+ and 2+ Pairs Amand Faessler, Tuebingen
55
IBM: Lowest Order Mapping (LO).
Ap(j) and Bp(j, j‘) by equating matrix elements in Fermion and Boson representation.(Tabulated by Barea and Iachello table XVII Phys. Rev. C79 (2009)
56
Next to Lowest Order Mapping (NLO)
Fermions Bosons 76Ge 76Se Lowest Order is enough
57
Neutrinoless Double Beta-
Decay Probability FAESSLER; Trento 2011
58
QRPA (TUE), Shell Model IBM2, PHFB, PHFB+GCM(b)
QRPA; RQRPA; 3 Basis Sets; gA=1.00 1.25; Bonn+Argonne; 2 Short Range Correlations Amand Faessler, Tuebingen
59
Fermi and Gamow-Teller 0nbb Transition Operator with Closure
7. Can one measure with Charge Transfer Reactions the 0nbb Fermi Matrix Element? (V. Rodin and A. Faessler, Phys.Rev. C80(2009)041302; Prog. Part. Nucl. Phys. 66 (2011) 441) Fermi and Gamow-Teller 0nbb Transition Operator with Closure FAESSLER; Trento 2011
60
Fermi and Gamow-Teller 0nbb Transition Operator with Closure
0nbb Transition Matrix Element with Closure Relation: Amand Faessler, Tuebingen
61
Fermi Strength concentrated in the Isobaric Analogue State |IAS> and Double Isobaric Analogue State |DIAS> |DIAS> = |T, T-2> |IAS> = |T, T-1> |g.s.i>=|0i+> |g.s.f>=|T-2,T-2> Isotensor force needed: T T-2; Coulomb Interaction 0+ T- 0+ T- T- +e|DIAS>
62
Gamow Teller Strength not concentrated in one State broad Resonance.
Fermi Transition: narrow Gamow-Teller: Main Contrib. Neutron Pairs: T =1, L=0 S=0 Gamow-Teller: gA (s*s) |S=0> = - gA 3|S=0> Fermi (no spin dep.): gV |S=0> = 1 |S=0> Shell Model for Fermi ~ (1/5) of QRPA Amand Faessler, Tuebingen
63
Fermi 0nbb Transition Operator (Vadim Rodin)
Amand Faessler, Tuebingen
64
Page 38 FAESSLER; Trento 2011
65
Transition Matrix Elements for Fermi Transitions:
|IAS> = |T, T-1> 0+ |g.s.i> =|T, T> |g.s.f> = |T-2,T-2> + e|DIAS> First Leg Second Leg 0+ T- Exp. (d,2He): Frekers; Sakai; Zegers T-
66
8. How to find the Leading Mechanism for the onbb ?
Light left handed Majorana n Exchange Heavy left handed Majorana n Exchange Heavy right handed Majorana n Exchange SUSY Lepton Number Violating Mechanism. F. Simkovic, J. Vergados, A. Faessler, Phys. Rev. D82, (2010) A. Faessler, A. Meroni, Petcov, Simkovic, Vergados, Phs. Rev.D; arXive: Amand Faessler, Tuebingen
67
GUT: Light and Heavy left handed Majorana Neutrino Exchange
WL e- Unek=1,2,3 nkM mass NkL mass UNek=4,5,6 Page 41 e- WL u d Amand Faessler, Tuebingen
68
Different Mechanisms for the 0nbb
FAESSLER; Trento 2011
69
Coefficients for the different Mechanisms
FAESSLER; Trento 2011
70
SUSY: R-Parity Breaking Lepton Number-Violating
Minimal Supersymmetric Model Super-fields: Amand Faessler, Tuebingen
71
Gluino Exchange; Strong Interaction;
Gluinos couple to Quarks and SUSY-Quarks. l‘ijk LLi QLj DRk FAESSLER; Trento 2011
72
Amand Faessler, Tuebingen
Transition Probability prop to Inverse Half Life; SUSY Contribution l‘111. Dominance of Gluino echange in short range part assumed. Similar expression for Dominance of Neutralino exchange. Amand Faessler, Tuebingen
73
Two leading non-interfering Mechanisms: Light Majorana and Heavy R Neutrino
i = different nuclei, e.g. 76Ge, 100Mo, 130Te; |h|2 > 0 and our matrix element for gA = 1.25 Due to ratios only minimal changes for gA=1.00 Amand Faessler, Tuebingen
74
Two interfering Mechanisms: Light Majorana and Heavy Left Neutrino
Light Majorana-Neutrino and Gluino or Neutralino exchange. Three different transitions needed, e.g. 76Ge, 100Mo, 130Te, to determine the three parameters. Amand Faessler, Tuebingen
75
9. HD claim for Detection of 0n DBD
hep-ph/ Klapdor and coworkers in Heidelberg claim, they have detected 0nbb of 76Ge Source = Detector 10.9 kg - ( 86% from 8% nat.) 76Ge Gran Sasso Laboratory (Italy) Spectrum with 71.7 kg•y FAESSLER; Trento 2011
76
Amand Faessler, Tuebingen
Neutrino Mass from 0nbb Experiment Klapdor et al. 76Ge Mod. Phys. Lett. A21,1547(2006) ; T(1/2; 0nbb) = ( ) x 1025 years; 6s Matrix Elements: QRPA Tuebingen <m(n)> = [eV] (exp+-0.02; theor+-0.01) [eV] Amand Faessler, Tuebingen
77
Amand Faessler, Tuebingen
1) Summary Comparing four different approaches for the 0nbb matrix elements: Shell model only small basis; violates the Ikeda sum rule by 50 to 60%. Interacting boson Model: only s (0+) and d (2+) pairs. Projected Hartee Fock Bogoliubov: Only 0+ pairs. QRPA large basis; fulfills Ikeda sum rule; realistic forces. Amand Faessler, Tuebingen
78
Amand Faessler, Tuebingen
2) Summary Search for the Leading Mechanism One Leading Mechanism: Determine the h1(mn ?) in two systems. Is it the same? Two leading non-interfering mechanisms: Determine h1 and h2 in three systems Two interfering mechanisms: Determine h1, h2 and the relative phase theta in three nuclei and verify it in three nuclei with at least one other. THE END Amand Faessler, Tuebingen
79
Fermi and Gamow-Teller 0nbb Transition Operator with Closure
7. Can one measure with Charge Transfer Reactions the 0nbb Fermi Matrix Element? (V. Rodin and A. Faessler, Phys.Rev. C80(2009)041302; Prog. Part. Nucl. Phys. 66 (2011) 441) Fermi and Gamow-Teller 0nbb Transition Operator with Closure FAESSLER; Trento 2011
80
Fermi and Gamow-Teller 0nbb Transition Operator with Closure
0nbb Transition Matrix Element with Closure Relation: Amand Faessler, Tuebingen
81
Fermi Strength concentrated in the Isobaric Analogue State |IAS> and Double Isobaric Analogue State |DIAS> |DIAS> = |T, T-2> |IAS> = |T, T-1> |g.s.i>=|0i+> |g.s.f>=|T-2,T-2> Isotensor force needed: T T-2; Coulomb Interaction 0+ T- 0+ T- T- +e|DIAS>
82
Gamow Teller Strength not concentrated in one State broad Resonance.
Fermi Transition: narrow Gamow-Teller: Main Contrib. Neutron Pairs: T =1, L=0 S=0 Gamow-Teller: gA (s*s) |S=0> = - gA 3|S=0> Fermi (no spin dep.): gV |S=0> = 1 |S=0> Shell Model for Fermi ~ (1/5) of QRPA Amand Faessler, Tuebingen
83
Fermi 0nbb Transition Operator (Vadim Rodin)
Amand Faessler, Tuebingen
84
Transition Matrix Elements for Fermi Transitions:
|IAS> = |T, T-1> 0+ |g.s.i> =|T, T> |g.s.f> = |T-2,T-2> + e|DIAS> First Leg Second Leg 0+ T- Exp. (d,2He): Frekers; Sakai; Zegers T-
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.