Download presentation
Presentation is loading. Please wait.
1
M-C simulation of reactor e flux;
STUDIES OF REACTOR ELECTRON NEUTRINO MAGNETIC MOMENT AND RADIATIVE DECAY M-C simulation of reactor e flux; Data analysis for the limits of electron neutrino magnetic moment ; Data analysis for the limit of neutrino radiative decay lifetime; Some physics potential of reactor neutrino experiment. XIN Biao / 辛 標 On behalf of TEXONO collaborator China Institute of Atomic Energy/中國原子能科學研究院 新竹
2
M-C simulation of reactor e flux
Theory calculation Experiment Measurement Magnetic moment Radiative decay M-C simulation Experiment Measurement Magnetic moment Radiative decay
3
electron neutrino flux
Simulation of reactor electron neutrino flux Nuclear material Fission products n Structure material Neutron sampling Geometry description Probability of EC decay Electron neutrino flux Physical model n rich nuclei -decay EC EC Electron neutrino emission n rich nuclei - decay Stable isotope even-even Stable isotope electron anti-neutrino emission
4
Direct fission product Direct fission product
M-C simulation ——source of reactor electron neutrino Z 104Tc 18m 103Tc 50s 104Ru stable 103Ru 39d 104Rh 42s 103Rh 104Pd -decay of fission product n EC - N Direct fission product Fission products Structure material 7E-10 - 3E-10 <3E-8 235U Y(Z, N)×PEC (Per fission) 1.7E-6 1.3E-5 239Pu 1E-7 1.2E-8 6.0 1.26 128I 4E-8 0.3 0.88 110Ag 1E-9 1.7 1.9 108Ag 7E-8 0.4 1.15 104Rh <1E-5 0.2 87Sr 1.4E-5 0.005 0.53 86Rb Y(Z, N) PEC(%) QEC(MeV) Direct fission product
5
M-C simulation ——source of reactor electron neutrino
Neutron activation fission products QEC(MeV) σn (barns) PEC(%) Y(Z, N) (Per fission) Y(Z, N)×PEC 235U 239Pu 104Rh 1.15 146 0.4 3.2 6.8 1.3E-4 2.7E-4 110Ag 0.88 89 0.3 0.03 1.1 9E-7 3.3E-5 122Sb 1.62 6.2 2.2 0.012 0.043 2.6E-6 1.0E-5 128I 1.26 6.0 0.12 0.52 6.9E-5 3.1E-4
6
enrichment of the nucleus (A-1 )
M-C simulation ——source of reactor electron neutrino Structure material isotopes Decay lifetime T1/2 enrichment of the nucleus (A-1 ) QEC (MeV) PEC(%) 55Fe 2.7y 5.8 0.23 100 51Cr 27.7d 4.3 0.75 59Ni 7.6*104y 68.1 1.073 43 113Sn 115.09d 0.97 1.036 49 Contribution to electron neutrino ?
7
Contribution of different isotopes:
M-C simulation of reactor electron neutrino ——physical model Total flux of electron neutrino emitted from reactor structure material: Ratio of neutron capture probability of each isotope in the different cell: Contribution of different isotopes: 50Cr, 54Fe, 58Ni, 112Sn activation isotopes in reactor structure material 51Cr + e V + νe 55Fe + e Mn + νe 59Ni + e Co + νe 113Sn + e In + νe
8
M-C simulation of reactor electron neutrino ——geometry description
50Cr in RC , SS & Zr-alloy; 54Fe in RC , SS & Zr-alloy; 58Ni in RC , SS& Zr-alloy; 112Sn in Zr-alloy; Nuclear fuel material: UO2; enrichment of 235U : 3 %; Height of the fuel rod: 400cm; Radius of the fuel rod: 0.45cm;
9
M-C simulation of reactor electron
neutrino ——geometry description Reactor core: 624 lattices; Fuel rod: 72 rods in each lattice; Mass of UO2: 138 tons; Control rods And water Zr-alloy UO2
10
RC 4967tons、stainless steel 1040tons、Zr-alloy 63 tons
M-C simulation of reactor electron neutrino ——geometry description RC 4967tons、stainless steel 1040tons、Zr-alloy 63 tons 50Cr %; 54Fe --4.2%; 58Ni --6.3%; 112Sn --0%. 50Cr %; 54Fe --0.1%; 58Ni %; 112Sn --0%. 50Cr %; 54Fe –0.006%; 58Ni %; 112Sn –0.01%.
11
M-C simulation of reactor electron neutrino ——neutron transport
Source neutron sampling Watt fission spectrum : Fired by thermal neutron : a=0.988 b=2.249 Simulation of neutron flux Tallies
12
Simulation result Fission neutrons are mostly absorbed by fuel rods and control rods; Electron neutrino are mainly contributed by Cr-50 in control rods;
13
n-absorption: Thermal neutron capture cross-section
94% of the captured neutrons are thermal neutrons. Simulation result n-absorption: Thermal neutron capture cross-section
14
Simulation result Neutrino flux at detector position due to Cr-50 is: 5.0×108 cm-2s-1 Cross check—— K-eff calculation; Uncertainty: The SD of M-C simulation <0.1%; System error < 15%;
15
Data analysis for reactor electron neutrino magnetic moment
Scattering Electron recoil spectrum e magnetic moment fitting
16
Data analysis——magnetic moment
Nsm(E)和Nmm(E) A0 a) t2 t3 t4 t1 t0 Reactor on Aoff Aon Reactor off b) Time Flux Average flux t0: 2001年9月8日; t1: 2001年10月8日; t2: 2001年11月14日; t3: 2001年12月18日; t4: 2002年1月15日;
17
Data analysis----neutrino magnetic moment
Nsm(E) and Nmm(E) Flux of e : flux: 5.0×108cm-2s-1 Energy : 747keV detector: material:HPGe Mass :1.054kg
18
Data analysis——program
No Yes date.rz Standard cut (PSD, cosmic-veto, anticompton) Energy calibration Single spectrum Ni(E) Next spectrum? Read the next *.rz file Spectrum adding ΣNi(E) Read the real measurement time Ti Dead time correction (ai)、random correction (bi, ci) Spectrum normalization n(E)=ΣNi(E)/ ΣTiai bici The end Data analysis——program
19
Data analysis ——spectrum processing
Normalized Non(E) and Nbkg(E) Non(E)-Nbkg(E)
20
Data analysis ——fitting of the e
21
Data analysis——neutrino decay
Decay model Decay lifetime (c.m./m) Fitting of the experiment data
22
Data analysis ——neutrino decay
Energy range:0~6MeV
23
Data analysis—— neutrino decay
Non(E)-Nbkg(E)
24
Data analysis—— neutrino decay
h=-0.055±0.061 t/mn≥1.3 s·eV-1 (C.L. 68%)
25
Physics potential Can we increase the flux of the electron neutrinos emitted from a reactor ? 1 fuel rod replaced by Cr-50 rods, …… 2 fuel rods replaced by Cr-50 rods … n fuel rods replaced by Cr-50 rods …
26
The reactor still work well
Physics potential The reactor still work well Neutrino flux can be enhanced up to 103 times
27
Number of target nuclei
Physics potential 71Ga(ne, e-)71Ge CC event rate target materials isotope Nature enrichment (%) Number of target nuclei (1027) X(ne, e-)Y Event rate (counts/day) Gallium 71Ga 39.89 33.7 3.4 Indian 115In 95.7 49.9 20.8 Ytterbium 176Yb 12.7 4.3 6.64 Molybdenum 100Mo 9.63 5.8 3.64 Neutrino flux: 2×1011cm-2s-1 ; 10 tons target materials in nature;
28
Conclusion We performed the simulation of the emissions of electron neutrinos from a nuclear reactor. At detector position, the electron neutrino flux due to 51Cr is : 5.0×108cm2s-1; The limits of electron neutrino magnetic moment and radiative decay lifetime has been found based on a reactor neutrino experiment : The physics potential of the reactor neutrino experiment has been discussed. t/mn≥1.3 s·eV-1 (C.L. 68%)
29
Thanks !
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.