Download presentation
Presentation is loading. Please wait.
Published byJoshua Alexander Modified over 6 years ago
1
Low energy nuclear collective modes and excitations
Low energy excitations in Neon isotopes, N=16 isotones and 68Ni within QRPA and Gogny force Sophie Péru Marco Martini
2
Beyond “mean field” … with RPA or QRPA
RPA approaches describe all multipolarties and all parities, collective states and individual ones, low energy and high energy states with the same accuracy. A l’approximation de faible amplitude , i.e. pour des noyaux « harmoniques » E δ2E/δq2>0 δ2E/δq2 δE/δq=0 qμν 2
3
Formalism HFB+QRPA {b+ b} quasi-particle (qp) creation and annihilation operators. In axial symmetry , QRPA states {q+} are obtained for each block K (Kp≤Jp) They are solution of In our approach, The effective interaction D1S is used both in the HFB mean field and in the QRPA matrix.
4
High energy collective states: giant resonances
Giant resonances are related to nuclear matter properties Monopole Dipole Quadripole Octupole IS GMR spurious state GQR IV GMR IV GDR
5
Spurious states « treatment »
6
Approach limited to Spherical nuclei with no pairing
RPA in spherical symmetry Giant resonances in exotic nuclei: 100Sn, 132Sn, 78Ni; S. Péru, J.F. Berger, and P.F. Bortignon, Eur. Phys. Jour. A 26, (2005) Monopole Dipole Approach limited to Spherical nuclei with no pairing Such study have shown the role of the consistence between mean field and RPA matrix.
7
Potential Energy Surfaces
QRPA in axial symmetry : Potential Energy Surfaces
8
Formalism Restoration of rotational symmetry for deformed states
For example: Jπ = 2+ In intrinsic frame Using time reversal symmetry, three independent calculations (Kπ = 0+, 1+, 2+) are needed.
9
IV Dipole
10
Quadrupole D.H. Youngblood, Y.-W. Lui, and H.L. Clark,
Phys.Rev.C 60 (1999)014304 Quadrupole D.H. Youngblood, Y.-W. Lui, and H.L.Clark, Phys. Rev. C, 65, (2002)
11
dipole response for Neon isotopes
Increasing neutron number PDR and shift to low energies Increasing of fragmentation 20Ne 22Ne 18Ne PDR proton 24Ne 26Ne 28Ne PDR PDR PDR
12
B(E1) distributions
14
Evolution with A Néon isotopes N=16 Isotones Ne Ne Ne Ne Mg Si
15
ρ δρ 26Ne Pygmy w.f.(10.7 MeV) Proton: 2qp contrib. [e fm^-3]
15.97 MeV 2s1/2 1p1/2 X2=0.04 17.60 MeV 1d5/2 1p3/2 X2=0.02 17.48 MeV 1f7/2 1d5/2 X2=0.01 Neutron: 2qp contrib. 10.52 MeV 2p3/2 2s1/2 X2=0.67 13.68 MeV 1f7/2 1d5/2 X2=0.10 12.43 MeV 2p1/2 2s1/2 X2=0.09 10.82 MeV 2p3/2 1d3/2 X2=0.03 18.50 MeV 1d3/2 1p1/2 X2=0.01 [e fm^-3] [fm^-3]
16
ρ δρ 28Mg Pygmy w.f. (11.6 MeV) [e fm^-3] Proton: 2qp contrib. [fm^-3]
MeV 2s1/2 1p1/2 X2=0.06 MeV 1f7/2 1d5/2 X2=0.02 Neutron: 2qp contrib. MeV 2p3/2 2s1/2 X2=0.40 MeV 2p3/2 1d3/2 X2=0.33 MeV 1f7/2 1d5/2 X2=0.06 MeV 2p1/2 2s1/2 X2=0.06 MeV 2p1/2 1d5/2 X2=0.03 [e fm^-3] δρ [fm^-3]
17
ρ δρ 30Si Pygmy w.f. (12.2 MeV) [e fm^-3] Proton: 2qp contrib
MeV 2s1/2 1p1/2 X2=0.19 MeV 1f7/2 1d5/2 X2=0.07 MeV 2p3/2 1d5/2 X2=0.01 Neutron: 2qp contrib. MeV 2p3/2 2s1/2 X2=0.44 MeV 1f7/2 1d5/2 X2=0.11 MeV 2p3/2 1d3/2 X2=0.07 MeV 2p1/2 2s1/2 X2=0.07 [e fm^-3] δρ [fm^-3]
18
ρ δρ 18Ne Pygmy w.f.(14.2 MeV) Proton: 2qp contrib.
MeV 1f7/2 1d5/2 X2=0.26 MeV 2p3/2 1d5/2 X2=0.23 MeV 2s1/2 1p1/2 X2=0.12 MeV 2p3/2 2s1/2 X2=0.09 16.95 MeV 1d5/2 1p3/2 X2=0.09 MeV 2p1/2 2s1/2 X2=0.04 Neutron: 2qp contrib. MeV 1d3/2 1p3/2 X2=0.04 MeV 2s1/2 1p1/2 X2=0.04 ρ δρ [e fm^-3] [fm^-3]
20
Correlations between PDR and symmetry energy
Carbone et al. Phys. Rev. C (2010) Effective Lagrangians Skyrme Forces EWSR [%] L [MeV] D1S 1,2 22,5 D1N 1,5 33,6 D1M 1,3 25,3 Similar study with Gogny: (absent in literature) M. Martini
21
Dipole Resonances in 68Ni
Gogny Effective Lagrangian Comparison among models and forces Skyrme M. Martini
22
Dipole response for Zr isotopes :
B(E1) B(M1) 86Zr 88Zr 90Zr M1 γ strength for 92Zr, H. Utsunomiya et al, PRL 100, (2008) 92Zr 94Zr 96Zr S.Goriely, H. Goutte, S. Hilaire, M. Martini, S. Péru, …
23
= 5 Dimension Collective Hamiltonian
Beyond mean field … with GCM (GCM+GOA 2 vibr. + 3 rot.) = 5 Dimension Collective Hamiltonian 5DCH
24
HFB+QRPA / HFB+5DCH with the same interaction:
A. Obertelli, et al, Phys. Rev. C 71, (2005) N=16 isotones S. Péru,AIPS Conference proceedings No. 1165,NSD09, (Melville, New York, 2009), p165
25
QRPA/5DCH Sn isotopes
26
Ni isotopes S. Péru,AIPS Conference proceedings No. 1165,NSD09, (Melville, New York, 2009), p165
27
Spectroscopy in neutron rich Ni isotopes within QRPA
L. Gaudefroy, S. Péru …
28
Spectroscopy in neutron rich Ni isotopes within QRPA
29
0+ states in 68Ni within QRPA
M. Martini & S. Péru
30
0+ states in 68Ni within QRPA Transition densities
Protons Neutrons Transition densities Protons Neutrons Protons Neutrons M. Martini, S. Péru …
31
… beyond the nuclear structure :
Test of QRPA and 5DCH (GCM) wave functions in proton inelastic scattering… 36S HFB+5DCH E (2+1) = 2.34 MeV B(E2) = 375 e2fm4 HFB+QRPA E (2+1) = 3.29 MeV B(E2) = e2fm4 Exp E (2+1) = MeV B(E2) = 100 e2fm4 E. Bauge and S. Péru
32
differential cross sections for 14.1 MeV neutron on 238 U (a,c).
Comparison between experimental data (circles) and one-step contributions (full curves) to the double- differential cross sections for 14.1 MeV neutron on 238 U (a,c). M. Dupuis ,E. Bauge,L. Bonneau,J.-P. Delaroche ,T. Kawano ,S. Karataglidis and S. Péru, Proceedings of the Second International Workshop on Nuclear Compound Reactions and Related Topics, (2010).
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.