Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stefano Romeo on behalf of SPARC_LAB collaboration

Similar presentations


Presentation on theme: "Stefano Romeo on behalf of SPARC_LAB collaboration "β€” Presentation transcript:

1 High quality plasma wakefield acceleration experiment in linear regime at SPARC_LAB
Stefano Romeo on behalf of SPARC_LAB collaboration European Advanced Accelerator Concepts, La Biodola 26/09/2017

2 Blow-out regime πœΆβ‰«πŸ 𝐸 π‘Ÿ = 𝑛 0 2 πœ€ 0 π‘Ÿ
There is not a complete analytical solution of the fields inside plasma Ion column model 1 π‘Ÿ πœ• πœ•π‘Ÿ π‘Ÿ( 𝐸 π‘Ÿ βˆ’π‘ 𝐡 πœƒ ) = 𝜌 πœ€ 0 βˆ’ πœ‡ 0 𝑐 𝐽 𝑧 Since inside bubble there is no current, the transverse field can be derived from electrostatic component only (cylinder with a constant charge density 𝑛 0 ) 𝐸 π‘Ÿ = 𝑛 0 2 πœ€ 0 π‘Ÿ Blow out field In the position of the bubble closing there is a spike in the accelerating field Linear dependency of the focusing Accelerating field doesn’t depend on transverse position Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

3 Linear regime 𝒏 𝒃 𝒏 𝟎 =𝜢β‰ͺ𝟏 π‘Š 𝑧,π‘Ÿ =𝑒 𝐸 + 𝑣 Γ— 𝐡 𝑧,π‘Ÿ
𝒏 𝒃 𝒏 𝟎 =𝜢β‰ͺ𝟏 Linear field In linear approximation it is possible to derive an analytical solution for the fields It is possible to inject a beam in the crest region (no focusing) Non linear dependency of the focusing Accelerating field depends on transverse position Lower field π‘Š 𝑧,π‘Ÿ =𝑒 𝐸 + 𝑣 Γ— 𝐡 𝑧,π‘Ÿ 𝐸 𝑧 π‘Ÿ,πœ‰ =𝑅 π‘Ÿ 𝑍 β€² πœ‰ 𝐸 π‘Ÿ π‘Ÿ,πœ‰ = 𝑅 β€² π‘Ÿ 𝑍 πœ‰ 𝑍 πœ‰ = 2πœ‹ π‘š 𝑒 𝑐 2 𝑒 𝛼 π‘˜ 𝑝 𝜎 𝑧 𝑒 βˆ’ π‘˜ 𝑝 2 𝜎 𝑧 2 /2 𝑠𝑖𝑛 π‘˜ 𝑝 πœ‰ 𝑍 β€² (πœ‰)= 2πœ‹ π‘š 𝑒 𝑐 2 𝑒 𝛼 π‘˜ 𝑝 2 𝜎 𝑧 𝑒 βˆ’ π‘˜ 𝑝 2 𝜎 𝑧 2 /2 π‘π‘œπ‘  π‘˜ 𝑝 πœ‰ 𝑅 0 = π‘˜ 𝑝 2 𝜎 π‘Ÿ 𝑒 π‘˜ 𝑝 2 𝜎 𝑧 𝛀 0, π‘˜ 𝑝 2 𝜎 π‘Ÿ 2 2 𝑅 π‘Ÿ =𝑅 0 βˆ’ π‘˜ 𝑝 π‘Ÿ 2 + π‘˜ 𝑝 π‘Ÿ 4 +… 𝑅 β€² π‘Ÿ =βˆ’ π‘˜ 𝑝 2 2 π‘Ÿ+ π‘˜ 𝑝 π‘Ÿ 3 +… π‘˜ 𝑝 = 2πœ‹ πœ† 𝑝 = 𝑒 2 𝑛 0 πœ€ 0 π‘š 𝑒 𝑐 2 Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

4 High quality acceleration in linear regime
Transverse contribution (sliced) 𝐢 𝑆 =βˆ’ 𝑒 π‘˜ 𝑝 2 𝑍 πœ‰ 𝐿 8 𝜎 π‘Ÿ,𝐷 2 𝛾 π‘š 𝑒 𝑐 2 Spherical aberration coefficient 𝜎 𝐸,𝑓 = 𝜎 𝐸,𝑖 βˆ’ 𝛾 0 𝛾 tan 2 πœ™ 0 π‘˜ 𝑝 2 𝜎 𝑧,𝑀 π‘˜ 𝑝 4 𝜎 𝑧,𝑀 π‘˜ 𝑝 4 𝜎 π‘Ÿ,𝑀 𝑅 2 (0) βˆ’ π‘˜ 𝑝 4 𝜎 π‘Ÿ,𝑀 2 𝜎 𝑧,𝑀 2 4𝑅 (0) Bunch length LT correlation Chirp Energy spread growth High quality requires: 𝜎 π‘Ÿ,𝑀 β‰ͺ 𝜎 π‘Ÿ,𝐷 π‘˜ 𝑝 𝜎 𝑧,𝑀 β‰ͺ1 In many realistic cases, beam loading is not negligible Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

5 BLAST scheme 𝛽 π‘₯ = 2 𝛾 π‘˜ 𝑝 𝜎 π‘₯ = 4 𝛾Λ𝒡 πœ€ 𝑛 𝜎 π‘₯ = 4 1 𝛾 2 πœ€ 𝑛 π‘˜ 𝑝
The driver generates a linear field Witness can be injected on crest The field generated by the witness is non linear Focusing is guaranteed by a beam loading effect 𝜎 π‘₯ = 4 𝛾Λ𝒡 πœ€ 𝑛 𝜎 π‘₯ = 4 1 𝛾 πœ€ 𝑛 π‘˜ 𝑝 𝛽 π‘₯ = 2 𝛾 π‘˜ 𝑝 Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

6 Energy spread growth πœ• 𝐸 𝑧 πœ•πœ‰ =0 Beam loading compensation
The longitudinal field generated by a low charge high density bunch can be described by linear equations Barov, Nick, et al. "Energy loss of a high-charge bunched electron beam in plasma: Analysis."Β Physical Review Special Topics-Accelerators and BeamsΒ 7.6 (2004): The beam loading compensation occurs when the first derivative of the accelerating field in the center of the witness is 0 Chiou, T. C., and T. Katsouleas. "High beam quality and efficiency in plasma-based accelerators."Β Physical review lettersΒ 81.16 (1998): 3411. From the analytical model of field it is possible to evaluate the energy spread LCLS, CDR, ch07.Β SLAC πœ• 𝐸 𝑧 πœ•πœ‰ =0 sin πœ™ 0 =βˆ’ π‘˜ 𝑝 𝑍 𝑀 0 𝑅 𝑀 𝐸 0 Beam loading compensation For any witness in a great range of parameters it’s possible to find a bunch separation that guarantees beam loading compensation 𝜎 𝐸,𝑓 = 𝜎 𝐸,𝑖 βˆ’ 𝛾 0 𝛾 π‘˜ 𝑝 4 𝜎 𝑧,𝑀 4 4 Energy spread growth depends only on witness length Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

7 BLAST scheme transverse matching
A correlated focusing on longitudinal dimension causes emittance growth πœ€ 𝑛,𝑐 = π‘˜ 2 𝜎 π‘₯ 2 𝐿 𝑐 𝑓 2 πœ‰ Hypotesis of energy spread compensation using beam loading (NO BUNCH SHAPING) πœ• 𝐸 𝑧 πœ•πœ‰ =0 πœ•( 𝐸 π‘Ÿ βˆ’π‘ 𝐡 πœƒ ) πœ•πœ‰ =0 Hypotesis of quasi-linearity 𝐽 𝑧 =0 Lu, W., et al. "A nonlinear theory for multidimensional relativistic plasma wave wakefields a."Β Physics of PlasmasΒ 13.5 (2006): πœ•πœŒ πœ•π‘Ÿ,πœ‰ =0 πœ•( 𝐸 π‘Ÿ βˆ’π‘ 𝐡 πœƒ ) πœ•πœ‰ =0 Consequences 𝐽 π‘Ÿ =0 𝜎 π‘š = 4 1 𝛾 πœ€ 𝑛 π‘˜ 𝑝 𝑛= 𝑛 0 2 Ion column model can be applied Stupakov, G., et al. "Wake excited in plasma by an ultrarelativistic pointlike bunch." Physical Review Accelerators and Beams (2016): Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

8 Working point parameters
SPARC_LAB Working Point Driver Injection Witness 200 10.3 1.26 37.2 3 0.1 17 0.3 10 0.68 0.42 1.2 0.06 2β‹… 10 16 2 5 𝛾 𝜎 π‘Ÿ [ΞΌm] 𝜎 𝑧 [ΞΌm] 𝜎 𝐸 [%] πœ€ 𝑛 [ΞΌm] 𝑄[pC] 𝐼[kA] 𝑄 𝑛 0 [ cm βˆ’3 ] 𝐸 𝑧 [GV/m] Δ𝑠[cm] 𝝀 𝒑 β‰ˆπŸπŸ‘πŸ“ 𝛍𝐦 Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

9 Hybrid Tool: Architect
Bunch(es) are treated kinetically background plasma as a fluid cylindrical symmetry assumed run time figure of merit: 1cm/h no-Quasi Static Approximation Code reliability respect to full PIC code showed both for linear and quasi-linear regimes Massimo, F., S. Atzeni, and A. Marocchino. "Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code. "Β Journal of Computational PhysicsΒ 327 (2016): Marocchino, A., et al. "Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect.β€œ Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated EquipmentΒ 829 (2016): Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

10 Bunch separation scan Optimal injection distance 𝟎.πŸ“πŸŽπŸ“ 𝝀 𝒑
The model developed for BLAST scheme doesn’t forsee the driver head erosion effects A simulation scan is required in order to evaluate 𝑬 𝟎 and 𝝓 𝟎 sin πœ™ 0 =βˆ’ π‘˜ 𝑝 𝑍 𝑀 0 𝑅 𝑀 𝐸 0 Optimal injection distance 𝟎.πŸ“πŸŽπŸ“ 𝝀 𝒑 Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

11 Witness longitudinal phase space
Unoptimized injection phase Optimized injection phase Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

12 Energy spread evolution and accelerating gradient
𝜎 𝐸,𝑓 = 𝜎 𝐸,𝑖 βˆ’ 𝛾 0 𝛾 π‘˜ 𝑝 4 𝜎 𝑧,𝑀 4 4 Energy spread growth depends only on witness length Final accelerating gradient 1.07 GV/m 𝑬 𝟎 is not constant for the first cm Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

13 Witness envelope Envelope doesn’t follow the prevision for the first cm After the first cm the simulated background approaches the theoretical one Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

14 SPARC_LAB layout for beam driven PWFA experiments
Incoming witness Outcoming witness 𝛾=200 𝛾=300 πœ€ 𝑛 =0.3 π‘šπ‘š π‘šπ‘Ÿπ‘Žπ‘‘ πœ€ 𝑛 =0.308 π‘šπ‘š π‘šπ‘Ÿπ‘Žπ‘‘ 𝜎 𝐸 =0.1% 𝜎 𝐸 =0.22% Acceleration parameters Δ𝑠=5π‘π‘š 𝐸 𝑧 =1.07𝐺𝑉/π‘š π‘¬β‰…πŸπŸŽπŸŽβˆ’πŸπŸ“πŸŽ πŒπžπ• πœΊβ‰…πŸŽ.πŸ‘βˆ’πŸ’ 𝐦𝐦 𝐦𝐫𝐚𝐝 𝝈 𝑬 <𝟎.𝟏% 𝝈 𝒛 =πŸ’βˆ’πŸ•πŸ“ 𝛍𝐦 High quality PWFA Beam diagnostic Photoinjector that allows to create trains of high quality electron bunches 2 S band accelerating cavities (velocity bunching) C band accelerating cavity FEL Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

15 Stability analysis 𝜎 𝐸 =0.4Β±0.2% 𝛾=306Β±14
A scan of 30 simulation was performed using the latin hypercube sample in order to analyze the working point robustness The chosen parameter range of the scan is consistent with measurements performed at SPARC_LAB injector (worst results) 𝜎 π‘Ÿ Β±15% 𝜎 𝑧 Β±8% 𝑄±10% Δ𝑧±8% 𝜎 𝐸 =0.4Β±0.2% πœ€ 𝑛 =0.307Β±0.005 mm mrad 𝛾=306Β±14 Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

16 Conclusions Results Theoretical basis for working point design
Low energy working point fullfilled First working point stability test performed with promising results Future perspectives Start to end simulation of a BLAST working point at SPARC_LAB Stability analysis in the context of a S2E simulation Stefano Romeo EAAC 2017, La Biodola – 26/09/2017

17 Thanks for the attention
Acknowledgements: SPARC_LAB GROUP EAAC organizing committee Old and new friends here Stefano Romeo PhD defense La Sapienza, University of Rome 2017/09/20

18 Half density ion column
πœ• 𝐸 𝑧 πœ•πœ‰ =0 πœ• 𝐸 𝑧 πœ•π‘Ÿ = πœ‡ 0 𝑐 𝐽 π‘Ÿ πœ• 𝐽 π‘Ÿ πœ•πœ‰ =0 𝐽 π‘Ÿ =0 𝐽 z =0 𝜌= 𝑛 0 2 πœ• (𝐸 π‘Ÿ βˆ’π‘ 𝐡 πœƒ ) πœ•πœ‰ = πœ‡ 0 𝑐 𝐽 π‘Ÿ =0 πœ•πœŒ πœ•πœ‰ =0 1 π‘Ÿ πœ• πœ•π‘Ÿ π‘Ÿ( 𝐸 π‘Ÿ βˆ’π‘ 𝐡 πœƒ ) = 𝜌 πœ– 0 βˆ’ πœ‡ 0 𝑐 𝐽 𝑧 Stefano Romeo PhD defense La Sapienza, University of Rome 2017/09/20


Download ppt "Stefano Romeo on behalf of SPARC_LAB collaboration "

Similar presentations


Ads by Google