Presentation is loading. Please wait.

Presentation is loading. Please wait.

Complex Eigenvalues kshum ENGG2420B.

Similar presentations


Presentation on theme: "Complex Eigenvalues kshum ENGG2420B."— Presentation transcript:

1 Complex Eigenvalues kshum ENGG2420B

2 Steps in calculating eigenvalues and eigenvectors
Given a matrix M. Find the characteristic polynomial. Find the roots of the characteristic polynomial. For each eigenvalue  of M, find the non-zero vectors v such that M v =  v. kshum ENGG2420B

3 Example: flip A linear transformation L(x,y) given by: L(x,y) = (x, -y) x  x y  – y kshum ENGG2420B

4 Example: shear action A linear transformation given by L(x,y) = (x+0.25y, y) x  x y y  y kshum ENGG2420B

5 Repeated eigenvalues, one linearly independent eigenvector
What are the eigenvalues of ? Eigenvectors ? Solve \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 ( k nonzero ) kshum ENGG2420B

6 Example: Expansion L(x,y) = (ax, ay), for some constant a. x  ax
y  ay kshum ENGG2420B

7 Repeated eigenvalues, two linearly independent eigenvectors
What are the eigenvalues of ? Eigenvectors ? Solve \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 All non-zero vectors are eigenvector. kshum ENGG2420B

8 Example: Rotation Rotation by 90 degrees counter-clockwise: L(x,y) = (– y , x). x – y y  x kshum ENGG2420B

9 Eigenvalues = ? No real root
\det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 kshum ENGG2420B

10 Extension to complex vectors and matrix
Given a square matrix A, a non-zero vector v is called an eigenvector of A, if we an find a number , which may be complex, such that This number  is the eigenvalue of A corresponding to the eigenvector v. kshum ENGG2420B

11 Complex Eigenvalues \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 kshum ENGG2420B


Download ppt "Complex Eigenvalues kshum ENGG2420B."

Similar presentations


Ads by Google