Presentation is loading. Please wait.

Presentation is loading. Please wait.

Reaction Types. Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations.

Similar presentations


Presentation on theme: "Reaction Types. Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations."— Presentation transcript:

1 Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

2 Reaction Types

3 Combination Reactions
Two or more substances react to form one product Examples: N2 (g) + 3 H2 (g)  2 NH3 (g) C3H6 (g) + Br2 (l)  C3H6Br2 (l) 2 Mg (s) + O2 (g)  2 MgO (s)

4 2 Mg (s) + O2 (g)  2 MgO (s) Link to Video

5 Decomposition Reactions
One substance breaks down into two or more substances Examples: CaCO3 (s)  CaO (s) + CO2 (g) 2 KClO3 (s)  2 KCl (s) + O2 (g) 2 NaN3 (s)  2 Na (s) + 3 N2 (g) Link to Video

6 Combustion Reactions Rapid reactions that produce a flame
Most often involve hydrocarbons reacting with oxygen in the air Examples: CH4 (g) + 2 O2 (g)  CO2 (g) + 2 H2O (g) C3H8 (g) + 5 O2 (g)  3 CO2 (g) + 4 H2O (g)

7 Balancing Reactions

8 Law of Conservation of Mass
“We may lay it down as an incontestable axiom that, in all the operations of art and nature, nothing is created; an equal amount of matter exists both before and after the experiment. Upon this principle, the whole art of performing chemical experiments depends.” --Antoine Lavoisier, 1789

9 Dalton’s Postulates Atoms of an element are not changed into atoms of a different element by chemical reactions; atoms are neither created nor destroyed in chemical reactions. They just rearrange!

10 A process in which one or more substances is changed into one or more new substances is a chemical reaction. A chemical equation uses chemical symbols to show what happens during a chemical reaction. reactants products 3.7

11 How to “Read” Chemical Equations
2 Mg + O MgO 2 atoms Mg + 1 molecule O2 makes 2 formula units MgO 2 moles Mg + 1 mole O2 makes 2 moles MgO 48.6 grams Mg grams O2 makes 80.6 g MgO IS NOT 2 grams Mg + 1 gram O2 makes 2 g MgO 3.7

12 Balancing Chemical Equations
Write the correct formula(s) for the reactants and the product(s). Ethane reacts with oxygen to form carbon dioxide and water C2H6 + O2 CO2 + H2O Change the numbers in front of the formulas (coefficients) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts. 2C2H6 NOT C4H12 3.7

13 Balancing Chemical Equations
Start by balancing those elements that appear in only one reactant and one product. C2H6 + O2 CO2 + H2O start with C or H but not O 1 carbon on right 2 carbon on left multiply CO2 by 2 C2H6 + O2 2CO2 + H2O 6 hydrogen on left 2 hydrogen on right multiply H2O by 3 C2H6 + O2 2CO2 + 3H2O 3.7

14 Balancing Chemical Equations
Balance those elements that appear in two or more reactants or products. multiply O2 by 7 2 C2H6 + O2 2CO2 + 3H2O 2 oxygen on left 4 oxygen (2x2) + 3 oxygen (3x1) = 7 oxygen on right C2H O2 2CO2 + 3H2O 7 2 remove fraction multiply both sides by 2 2C2H6 + 7O2 4CO2 + 6H2O 3.7

15 Balancing Chemical Equations
Check to make sure that you have the same number of each type of atom on both sides of the equation. 2C2H6 + 7O2 4CO2 + 6H2O 14 O (7 x 2) 14 O (4 x 2 + 6) 12 H (2 x 6) 12 H (6 x 2) 4 C (2 x 2) 4 C Reactants Products 4 C 12 H 14 O 3.7

16 Remember IS NOT 2 Mg + O2 2 MgO 2 grams Mg + 1 gram O2 makes 2 g MgO
So How do we relate masses of reactants and products? That’s what we can observe! 3.7

17 Formula Weights

18 Formula Weight (FW) Sum of the average atomic weights for the atoms in a chemical formula So, the formula weight of calcium chloride, CaCl2, would be Ca: 1(40.1 amu) + Cl: 2(35.5 amu) 111.1 amu These are generally reported for ionic compounds

19 Molecular Weight (MW) Sum of the average atomic weights of the atoms in a molecule For the molecule ethane, C2H6, the molecular weight would be C: 2(12.0 amu) + H: 6(1.0 amu) 30.0 amu

20 Percent Composition One can find the percentage of the mass of a compound that comes from each of the elements in the compound by using this equation: % element = (number of atoms)(atomic weight) (FW of the compound) x 100

21 Percent Composition So the percentage of carbon in ethane is…
(2)(12.0 amu) (30.0 amu) 24.0 amu 30.0 amu = x 100 = 80.0%

22 Moles

23 Using Moles Moles provide a bridge from the molecular scale to the real-world scale

24 Avogadro’s Number 6.02 x 1023 1 mole of 12C has a mass of 12 g

25 Dozen = 12 Pair = 2 The mole (mol) is the amount of a substance that
contains as many elementary entities as there are atoms in exactly grams of 12C 1 mol = NA = x 1023 Avogadro’s number (NA) 3.2

26 atomic mass (amu) = molar mass (grams/mol)
eggs shoes Molar mass is the mass of 1 mole of in grams marbles atoms 1 mole 12C atoms = x 1023 atoms = g 1 12C atom = amu 1 mole 12C atoms = g 12C 1 mole lithium atoms = g of Li For any element atomic mass (amu) = molar mass (grams/mol) 3.2

27 Percent composition revisited
n x molar mass of element molar mass of compound x 100% n is the subscript number … Assume one mole of substance and the math goes like this. %C = 2 x (12.01 g) 46.07 g x 100% = 52.14% C2H6O %H = 6 x (1.008 g) 46.07 g x 100% = 13.13% %O = 1 x (16.00 g) 46.07 g x 100% = 34.73% 52.14% % % = 100.0% 3.5

28 Question What is the mass on one atom of carbon 12?
What is the mass in grams of one amu?

29 Mole Relationships One mole of atoms, ions, or molecules contains Avogadro’s number of those particles One mole of molecules or formula units contains Avogadro’s number times the number of atoms or ions of each element in the compound

30 Do You Understand Molar Mass?
How many atoms are in g of potassium (K) ? 3.2

31 Do You Understand Molar Mass?
How many atoms are in g of potassium (K) ? 1 mol K = g K 1 mol K 39.10 g K x 0.551 g K = moles K 3.2

32 molecular mass (amu) = molar mass (grams)
Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule. SO2 1S 32.07 amu 2O + 2 x amu SO2 64.07 amu For any molecule molecular mass (amu) = molar mass (grams) 1 molecule SO2 = amu 1 mole SO2 = g SO2 3.3

33 Do You Understand Molecular Mass?
How many H atoms are in 72.5 g of C3H8O ? 3.3

34 Do You Understand Molecular Mass?
How many H atoms are in 72.5 g of C3H8O ? 1 mol C3H8O = (3 x 12.01) + (8 x 1.008) = 60.09 g C3H8O 1 mol C3H8O molecules = 8 mol H atoms 1 mol H = x 1023 atoms H 1 mol C3H8O 60.09 g C3H8O x 8 mol H atoms 1 mol C3H8O x 72.5 g C3H8O = 9.65 moles H or 5.82 x 1024 atoms H 3.3

35 Mass Changes in Chemical Reactions
Write balanced chemical equation Convert quantities of known substances into moles Use coefficients in balanced equation to calculate the number of moles of the sought quantity Convert moles of sought quantity into desired units 3.8

36 Methanol burns in air according to the equation
2CH3OH + 3O CO2 + 4H2O If 209 g of methanol are used up in the combustion, what mass of water is produced? grams CH3OH moles CH3OH moles H2O grams H2O molar mass CH3OH coefficients chemical equation molar mass H2O 1 mol CH3OH 32.0 g CH3OH x 4 mol H2O 2 mol CH3OH x 18.0 g H2O 1 mol H2O x = 209 g CH3OH 235 g H2O 3.8

37 Finding Empirical Formulas

38 Calculating Empirical Formulas
One can calculate the empirical formula from the percent composition

39 Calculating Empirical Formulas
The compound para-aminobenzoic acid (you may have seen it listed as PABA on your bottle of sunscreen) is composed of carbon (61.31%), hydrogen (5.14%), nitrogen (10.21%), and oxygen (23.33%). Find the empirical formula of PABA.

40 Calculating Empirical Formulas
Assuming g of para-aminobenzoic acid, C: g x = mol C H: g x = 5.09 mol H N: g x = mol N O: g x = mol O 1 mol 12.01 g 14.01 g 1.01 g 16.00 g

41 Calculating Empirical Formulas
Calculate the mole ratio by dividing by the smallest number of moles: C: =  7 H: =  7 N: = 1.000 O: =  2 5.105 mol mol 5.09 mol 1.458 mol

42 Calculating Empirical Formulas
These are the subscripts for the empirical formula: C7H7NO2

43 Combustion Analysis Compounds containing C, H and O are routinely analyzed through combustion in a chamber like this C is determined from the mass of CO2 produced H is determined from the mass of H2O produced O is determined by difference after the C and H have been determined

44 Elemental Analyses Compounds containing other elements are analyzed using methods analogous to those used for C, H and O

45 Stoichiometric Calculations
The coefficients in the balanced equation give the ratio of moles of reactants and products

46 Stoichiometric Calculations
From the mass of Substance A you can use the ratio of the coefficients of A and B to calculate the mass of Substance B formed (if it’s a product) or used (if it’s a reactant)

47 Stoichiometric Calculations
C6H12O6 + 6 O2  6 CO2 + 6 H2O Starting with 1.00 g of C6H12O6… we calculate the moles of C6H12O6… use the coefficients to find the moles of H2O… and then turn the moles of water to grams

48 Real Life Analysis What is the percent composition of an organic substance called ethanol? Combust 11.5 g ethanol Collect 22.0 g CO2 and 13.5 g H2O 3.6

49 g of O = g of sample – (g of C + g of H) 4.0 g O = 0.25 mol O
Combust 11.5 g ethanol Collect 22.0 g CO2 and 13.5 g H2O g CO2 mol CO2 mol C g C 6.0 g C = 0.5 mol C g H2O mol H2O mol H g H 1.5 g H = 1.5 mol H g of O = g of sample – (g of C + g of H) 4.0 g O = 0.25 mol O Empirical formula C0.5H1.5O0.25 Divide by smallest subscript (0.25) Empirical formula C2H6O 3.6

50 Limiting Reactants

51 How Many Cookies Can I Make?
You can make cookies until you run out of one of the ingredients Once this family runs out of sugar, they will stop making cookies (at least any cookies you would want to eat)

52 How Many Cookies Can I Make?
In this example the sugar would be the limiting reactant, because it will limit the amount of cookies you can make

53 Limiting Reactants The limiting reactant is the reactant present in the smallest stoichiometric amount

54 Limiting Reactants The limiting reactant is the reactant present in the smallest stoichiometric amount In other words, it’s the reactant you’ll run out of first (in this case, the H2)

55 Limiting Reactants In the example below, the O2 would be the excess reagent

56 Do You Understand Limiting Reagents?
In one process, 124 g of Al are reacted with 601 g of Fe2O3 2Al + Fe2O Al2O3 + 2Fe Calculate the mass of Al2O3 formed. g Al mol Al mol Fe2O3 needed g Fe2O3 needed OR g Fe2O3 mol Fe2O3 mol Al needed g Al needed 1 mol Al 27.0 g Al x 1 mol Fe2O3 2 mol Al x 160. g Fe2O3 1 mol Fe2O3 x = 124 g Al 367 g Fe2O3 Start with 124 g Al need 367 g Fe2O3 Have more Fe2O3 (601 g) so Al is limiting reagent 3.9

57 Use limiting reagent (Al) to calculate amount of product that
can be formed. g Al mol Al mol Al2O3 g Al2O3 2Al + Fe2O Al2O3 + 2Fe 1 mol Al 27.0 g Al x 1 mol Al2O3 2 mol Al x 102. g Al2O3 1 mol Al2O3 x = 124 g Al 234 g Al2O3 3.9

58 Theoretical Yield The theoretical yield is the amount of product that can be made In other words it’s the amount of product possible as calculated through the stoichiometry problem This is different from the actual yield, the amount one actually produces and measures

59 Percent Yield Actual Yield Theoretical Yield Percent Yield = x 100
A comparison of the amount actually obtained to the amount it was possible to make Actual Yield Theoretical Yield Percent Yield = x 100


Download ppt "Reaction Types. Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations."

Similar presentations


Ads by Google