Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mrs. Rivas

Similar presentations


Presentation on theme: "Mrs. Rivas "β€” Presentation transcript:

1 Mrs. Rivas 𝒙 βˆ’ πŸ“ 𝒙 βˆ’ πŸ” 𝒙 𝒙² βˆ’πŸ“π’™ 𝒙 𝒙² βˆ’πŸ”π’™ βˆ’ πŸ‘ βˆ’πŸ‘π’™ πŸπŸ“ βˆ’ πŸ‘ βˆ’πŸ‘π’™ πŸπŸ–
Ida S. Baker H.S. b) 𝒙 𝟐 βˆ’πŸ–π’™+πŸπŸ“ a) βˆ’ 𝒙 𝟐 +πŸ—π’™βˆ’πŸπŸ– βˆ’( βˆ’ ) 𝒙² πŸ—π’™ πŸπŸ– πŸπŸ“Γ—πŸ πŸ“Γ—πŸ‘ βˆ’πŸπŸ“Γ—βˆ’πŸ βˆ’πŸ“Γ—βˆ’πŸ‘ πŸπŸ–Γ—πŸ πŸ—Γ—πŸ πŸ”Γ—πŸ‘ βˆ’πŸπŸ–Γ—βˆ’πŸ βˆ’πŸ—Γ—βˆ’πŸ βˆ’πŸ”Γ—βˆ’πŸ‘ 𝒙 2 βˆ’πŸ“π’™βˆ’πŸ‘π’™+πŸπŸ“ βˆ’(𝒙 2 βˆ’πŸ”π’™βˆ’πŸ‘π’™+πŸπŸ–) 𝒙 βˆ’ πŸ“ 𝒙 βˆ’ πŸ” 𝒙 𝒙² βˆ’πŸ“π’™ 𝒙 𝒙² βˆ’πŸ”π’™ βˆ’ πŸ‘ βˆ’πŸ‘π’™ πŸπŸ“ βˆ’ πŸ‘ βˆ’πŸ‘π’™ πŸπŸ– ( )( ) (π’™βˆ’πŸ“)(π’™βˆ’πŸ‘) π’™βˆ’πŸ“ π’™βˆ’πŸ‘ βˆ’( )( ) βˆ’(π’™βˆ’πŸ”)(π’™βˆ’πŸ‘) π’™βˆ’πŸ” π’™βˆ’πŸ‘

2 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation Essential Question # 1: What is the vertex from of a quadratic function? π’š=𝒂 π’™βˆ’π’‰ Β²+π’Œ Answer:

3 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation

4 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation Graphing a Parabola 1. Identify and graph the vertex. (h, k) 2. Identify and draw the axis of symmetry. x = h 3. Find and plot one points on one side of the axis of symmetry. 4. Plot the corresponding on the other side of the axis of symmetry. 5. Sketch the graph.

5 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation Graph the function 𝒇 𝒙 = 𝟏 𝟐 𝒙 𝟐 . π’š=𝒂 π’™βˆ’π’‰ Β²+π’Œ Vertex (𝟎,𝟎) Axis-Symmetry. 𝒙=𝟎 π’š= 𝟏 𝟐 (𝟐)Β² = 𝟏 𝟐 (πŸ’) 𝒙=𝟐 =𝟐 (𝟐,𝟐) π’š= 𝟏 𝟐 (πŸ’)Β² = 𝟏 𝟐 (πŸπŸ”) 𝒙=πŸ’ =πŸ– (πŸ’,πŸ–)

6 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation π’š=𝒂 π’™βˆ’π’‰ Β²+π’Œ Vertex (𝟎,𝟎) Axis-Symmetry. 𝒙=𝟎 π’š=βˆ’ 𝟏 πŸ‘ (πŸ‘)Β² =βˆ’ 𝟏 πŸ‘ (πŸ—) 𝒙=πŸ‘ =βˆ’πŸ‘ (πŸ‘,βˆ’πŸ‘)

7 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation π’š=𝒂 π’™βˆ’π’‰ Β²+π’Œ Vertex (𝟎,βˆ’πŸ“) Axis-Symmetry. 𝒙=𝟎 𝒙=𝟏 π’š= 𝟏 2 βˆ’πŸ“ =πŸβˆ’πŸ“ =βˆ’πŸ’ (𝟏,βˆ’πŸ’) 𝒙=πŸ‘ π’š= πŸ‘ 2 βˆ’πŸ“ =πŸ—βˆ’πŸ“ =πŸ’ (πŸ‘,πŸ’) Translation is 5 units down.

8 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation π’š=𝒂 π’™βˆ’π’‰ Β²+π’Œ Vertex (πŸ’,𝟎) Axis-Symmetry. 𝒙=πŸ’ 𝒙=πŸ“ π’š= πŸ“βˆ’πŸ’ 2 =(𝟏)Β² =𝟏 (πŸ“,𝟏) 𝒙=πŸ” π’š= πŸ”βˆ’πŸ’ 2 =(𝟐)Β² =πŸ’ (πŸ”,πŸ’) Translation is 4 units right.

9 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation 2. π’ˆ 𝒙 =𝒙²+πŸ‘ 3. 𝒉 𝒙 =(𝒙+𝟏)Β² Translation is 3 units up. Translation is 1 units left.

10 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation 4. 𝒇 𝒙 =πŸ‘ π’™βˆ’πŸ’ Β²βˆ’πŸ 5. 𝒇 𝒙 =βˆ’πŸ 𝒙+𝟏 𝟐 +πŸ’ Translation is 1 units left and 4 units up. Translation is 4 units right and 2 units down.

11 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation State weather the graph Reflects over the x-axis (𝒂 =βˆ’π’π’–π’Žπ’ƒπ’†π’“), Stretch (𝒂 > 𝟏) or Shrinks (𝟎 < 𝒂 < 𝟏). A) 𝑦= π‘₯ C) 𝑦=2 π‘₯βˆ’ E) 𝑦=βˆ’ π‘₯βˆ’ Since 𝒂 = βˆ’πŸ then the graph opens down and it reflects over the π’™βˆ’π’‚π’™π’Šπ’” and shrinks. Since 𝒂 =+ 𝟏 then the graph opens up. Since 𝒂= +𝟏 then the graph opens up and the graph stretches. F) 𝑦= π‘₯+2 2 βˆ’1 B) 𝑦= βˆ’ π‘₯ D) 𝑦=βˆ’2 π‘₯βˆ’ Since 𝒂 = βˆ’πŸ then the graph opens down and it reflects over the π’™βˆ’π’‚π’™π’Šπ’” and stretches. Since 𝒂= +𝟏 then the graph opens up and the graph shrinks. Since 𝒂 = βˆ’πŸ then the graph opens down and it reflects over the π’™βˆ’π’‚π’™π’Šπ’”.

12 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation Minimum and maximum value ** The minimum or maximum value is ALWAYS the π’š=π’Œ.

13 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation What is the is the minimum or maximum value of the following graphs. A) B) Vertex (βˆ’πŸ’,𝟐) Vertex (βˆ’πŸ,βˆ’πŸ‘) Since the graph opens up, it has a minimum value = -3. Since the graph opens down, it has a maximum value = 2.

14 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation Domain and Range [𝑲,∞) (βˆ’βˆž,π’Œ] Vertex (𝒉,π’Œ) ** The Domain (𝒉) is all the real numbers. (βˆ’βˆž,∞) ** The Range (π’Œ) is all real numbers ο‚³ (for minimum value) or ο‚£ (for maximum value) than the value of π’Œ.

15 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation What is the is the domain and range of the following graphs. A) B) Vertex (βˆ’πŸ’,𝟐) Vertex (βˆ’πŸ,βˆ’πŸ‘) Domain (h) = (-∞, ∞). Domain (h) = (-∞, ∞). Range (k) = [-3, ∞). Range (k) = (-∞, 2].

16 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation What is the vertex, axis of symmetry, the maximum or minimum, the domain and the range and the transformation of the parent function? 𝒂 =βˆ’πŸ‘ Vertex (πŸ’,βˆ’πŸ) Axis-Symmetry. 𝒙=πŸ’ Since a = 1 and negative the graph opens down and stretch. Since the graph opens down we have a maximum value of βˆ’πŸ and a reflection over the x-axis. Domain (h) = all the real numbers. (-∞, ∞) Range (k) = all the real numbers β‰€βˆ’πŸ. (-∞, -2] Transformation is 4 units right and 2 units down.

17 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-1 Quadratic Functions and Transformation What is the vertex, axis of symmetry, the maximum or minimum, the domain and the range and the transformation of the parent function? 𝒂 =𝟎.πŸ‘ Vertex (βˆ’πŸ,πŸ’) Axis-Symmetry. 𝒙=βˆ’πŸ Since 0 < a < 1 and Positive the graph opens up and shrink. Since the graph opens up we have a minimum value of πŸ’. Domain (h) = all the real numbers. (-∞, ∞) Range (k) = all the real numbers β‰₯πŸ’. [4,∞) Transformation is 1 units left and 4 units up.

18 Mrs. Rivas The solution is βˆ’πŸ, πŸ’ πŸπ’™+πŸ‘π’š=βˆ’πŸπŸ” πŸπŸŽπ’™+πŸπŸ“π’š=βˆ’πŸ–πŸŽ πŸ“π’™βˆ’πŸπŸŽπ’š=πŸ‘πŸŽ
Ida S. Baker H.S. (πŸ“) πŸπ’™+πŸ‘π’š=βˆ’πŸπŸ” πŸπŸŽπ’™+πŸπŸ“π’š=βˆ’πŸ–πŸŽ (βˆ’πŸ) πŸ“π’™βˆ’πŸπŸŽπ’š=πŸ‘πŸŽ βˆ’πŸπŸŽπ’™+πŸπŸŽπ’š=βˆ’πŸ”πŸŽ πŸ‘πŸ“π’š=βˆ’πŸπŸ’πŸŽ πŸ‘πŸ“ πŸ‘πŸ“ πŸπ’™+πŸ‘π’š=βˆ’πŸπŸ” π’š=βˆ’πŸ’ πŸπ’™+πŸ‘(βˆ’πŸ’)=βˆ’πŸπŸ” πŸπ’™βˆ’πŸπŸ=βˆ’πŸπŸ” The solution is βˆ’πŸ, πŸ’ + 𝟏𝟐 + 𝟏𝟐 πŸπ’™=βˆ’πŸ’ 𝟐 𝟐 𝒙=βˆ’πŸ

19 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-2 Standard Form of a Quadratic Function 𝒇 𝒙 =𝒂𝒙²+𝒃𝒙+𝒄 y-intercept Step 1: Check 𝒂: ☻ If 𝒂 > 0 the quadratic functions opens up and the vertex represent the minimum point. ☻ If 𝒂< 0 the quadratic functions opens down and the vertex represent the maximum point. Step 2: Use βˆ’π’ƒ πŸπ’‚ to find the vertex. Step 3: Substitute x into the function to obtain the y, which is the minimum or maximum value.

20 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-2 Standard Form of a Quadratic Function Example: Graph 𝑦=π‘₯Β²+2π‘₯+1. What is the minimum value of the function. minimum value means y 𝑦=π‘₯Β²+2π‘₯+1 𝒇 𝒙 =𝒂𝒙²+𝒃𝒙+𝒄 𝒂= 𝟏> 𝟎 ☻ If 𝒂 > 0 the quadratic functions opens up and the vertex represent the minimum point. Step 2: Use βˆ’π’ƒ πŸπ’‚ to find the vertex. 𝑦=(βˆ’πŸ)Β²+2(βˆ’πŸ)+1 𝒙= βˆ’π’ƒ πŸπ’‚ = βˆ’πŸ 𝟐(𝟏) =βˆ’πŸ 𝑦=0 Step 3: Substitute x into the function to obtain the y, which is the minimum or maximum value. Vertex (-1, 0) which is the minimum point. Then minimum value is 0, since the minimum value is the y.

21 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-2 Standard Form of a Quadratic Function Example: continue Graph Graph 𝑦=π‘₯Β²+2π‘₯+1. What is the minimum value of the function. y-intercept Vertex (-1,0). x π’š=𝒙²+πŸπ’™+𝟏 (x, y) 𝟎 2 + πŸ’ 𝟎 +𝟏 (0, 1) 1 𝟏 2 + πŸ’ 𝟏 +𝟏 (1, 6) 2 𝟐 2 + πŸ’ 𝟐 +𝟏 (2, 9)

22 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-2 Standard Form of a Quadratic Function Graph and identify the, vertex, axis of symmetry, maximum or minimum value, and the range of π’š=𝒙²+πŸπ’™+πŸ‘. y-intercept 𝒇 𝒙 =𝒂𝒙²+𝒃𝒙+𝒄 𝒙= βˆ’π’ƒ πŸπ’‚ = βˆ’(𝟐) 𝟐(𝟏) =βˆ’πŸ π’š= βˆ’πŸ Β²+𝟐 βˆ’πŸ +πŸ‘=𝟐 Vertex: (-1, 2) Axis-sym.: x =-1 Minimum.: y = 2 Range: all real numbers β‰₯ 2 𝒙 𝒇 𝒙 =𝒙²+πŸπ’™+πŸ‘ π’š (𝒙, π’š) 1 𝟏 2 +𝟐 𝟏 +πŸ‘ 6 (1, 6) 2 βˆ’πŸ 2 +𝟐 βˆ’πŸ +πŸ‘ 11 (2, 11)

23 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-2 Standard Form of a Quadratic Function

24 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-2 Standard Form of a Quadratic Function

25 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-2 Standard Form of a Quadratic Function

26 International Studies Charter School.
Mrs. Rivas International Studies Charter School. Section 4-2 Standard Form of a Quadratic Function


Download ppt "Mrs. Rivas "

Similar presentations


Ads by Google