Download presentation
Presentation is loading. Please wait.
1
Splash Screen
2
Five-Minute Check (over Lesson 2–6) CCSS Then/Now New Vocabulary
Key Concept: Parent Functions Example 1: Identify a Function Given the Graph Example 2: Describe and Graph Translations Example 3: Describe and Graph Reflections Example 4: Describe and Graph Dilations Example 5: Real-World Example: Identify Transformations Concept Summary: Transformations of Functions Lesson Menu
3
Identify the type of function represented by the graph.
A. linear B. piecewise-defined C. absolute value D. parabolic 5-Minute Check 1
4
Identify the type of function represented by the graph.
A. piecewise-defined B. linear C. parabolic D. absolute value 5-Minute Check 2
5
A. $60 B. $101 C. $102 D. $148 5-Minute Check 3
6
Mathematical Practices 6 Attend to precision.
Content Standards F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Mathematical Practices 6 Attend to precision. CCSS
7
You analyzed and used relations and functions.
Identify and use parent functions. Describe transformations of functions. Then/Now
8
family of graphs reflection line of reflection dilation parent graph
parent function constant function identity function quadratic function translation Vocabulary
9
Concept
10
A. Identify the type of function represented by the graph.
Identify a Function Given the Graph A. Identify the type of function represented by the graph. Answer: The graph is a V shape. So, it is an absolute value function. Example 1
11
B. Identify the type of function represented by the graph.
Identify a Function Given the Graph B. Identify the type of function represented by the graph. Answer: The graph is a parabola, so it is a quadratic function. Example 1
12
A. Identify the type of function represented be the graph.
A. absolute value function B. constant function C. quadratic function D. identity function Example 1
13
B. Identify the type of function represented be the graph.
A. absolute value function B. constant function C. quadratic function D. identity function Example 1
14
Describe the translation in y = (x + 1)2. Then graph the function.
Describe and Graph Translations Describe the translation in y = (x + 1)2. Then graph the function. Answer: The graph of the function y = (x + 1)2 is a translation of the graph of y = x2 left 1 unit. Example 2
15
Describe the translation in y = |x – 4|. Then graph the function.
A. translation of the graph y = |x| up 4 units B. translation of the graph y = |x| down 4 units C. translation of the graph y = |x| right 4 units D. translation of the graph y = |x| left 4 units Example 2
16
Describe the reflection in y = –|x|. Then graph the function.
Describe and Graph Reflections Describe the reflection in y = –|x|. Then graph the function. Answer: The graph of the function y = –|x| is a reflection of the graph of y = |x| across the x-axis. Example 3
17
Describe the reflection in y = –x2. Then graph the function.
A. reflection of the graph y = x2 across the x-axis B. reflection of the graph y = x2 across the y-axis C. reflection of the graph y = x2 across the line x = 1. D. reflection of the graph y = x2 across the x = –1 Example 3
18
Describe the dilation on Then graph the function.
Describe and Graph Dilations Describe the dilation on Then graph the function. Answer: The graph of is a dilation that compresses the graph of vertically. Example 4
19
Describe the dilation in y = |2x|. Then graph the function.
A. dilation of the graph of y = |x| compressed vertically B. dilation of the graph of y = |x| stretched vertically C. dilation of the graph of y = |x| translated 2 units up D. dilation of the graph of y = |x| translated 2 units right Example 4
20
Identify Transformations
Example 5
21
Identify Transformations
Example 5
22
A. +4 translates f(x) = |x| right 4 units
Which of the following is not an accurate description of the transformations in the function ? A. +4 translates f(x) = |x| right 4 units B. –2 translates f(x) = |x| down 2 units C reflects f(x) = |x| across the x-axis D. +4 translates f(x) = |x| left 4 units Example 5
23
Concept
24
End of the Lesson
25
Page 113 – 116 #s 10 – 25, 33 – 38, 41, 42, 56 – 58,
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.