Presentation is loading. Please wait.

Presentation is loading. Please wait.

Charmonium experimental overview

Similar presentations


Presentation on theme: "Charmonium experimental overview"— Presentation transcript:

1 Charmonium experimental overview
Stephen Lars Olsen Seoul National University Topical Seminar on Frontier of Particle Physics Hu Yu Village, Beijing CHINA August 27-28, 2010

2 outline Lecture1: History & the discovery of the bound charmonium states Lecture 2: The non-charmonium, charmonium-like states & the future Yesterday Today

3 Summary (lecture 1) The charmonium spectrum is strong evidence that hadrons are composed of spin=1/2 constituent particles All of the charmonium states below the M=2mD “open charm” threshold have been found Most of the above-threshold 1- - states & the cc2’ have been identified The masses of the assigned states match theory predictions -variations are less than ~50 MeV Transitions between charmonium states are in reasonably good agreement with theoretical expectations

4 y(4415) y(4150) y(4040) c’ c2 y” 2mD0

5 g Transitions M1 transitions (G(keV)) g e- E1 transitions
J/y g hc ± 0.4 y’ g hc ± 0.2 Th Expt pp,h,p0 g e- E1 transitions Th Expt ± 4 ± 3 ± 3 ± 51 ± 48

6 Hadronic transitions y’p0J/y y’ppJ/y Ispin violation: ~1/200
y’  J/y +hadrons Gexp(keV) y‘p+p- J/y ± 7 y’ h J/y ± 1 y’ p0J/y ±0.1 pp, h, p0 pp,h,p0 g y’ J/y Ispin violation: y’p0J/y y’ppJ/y ~1/200

7 Predictions for the y” Gexp(keV) g g g e- y”p+p- J/y ~80 55 ± 15
th Expt y”p+p- J/y ~ ± 15 y” g cc ± 17 y” gcc ±30 g g pp,h,p0 g e-

8 Can we find other above-threshold states?
y(4415) These 2 may be simpler y(4150) y(4040) c’ c2 hc2 yc2 y” 2mD0

9 yc2 (hc2)DD violates parity
_ 2-+ &  DD not allowed hc2 yc2 Spin=0 c D J = 2 P=-1 D0 or D+ q yc2 c (or hc2) J = L P = (-1)L For J = 2 P = (-1)2 = +1 q c q D c D0 or D- Spin=0 yc2 (hc2)DD violates parity

10 Lowest possibility is DD* (or D*D)
_ _ Lowest possibility is DD* (or D*D) Spin=0 c D J = 2 P=-1 D0 or D+ q c yc2 J = L + S P = (-1)L For J = 2, L=1 is OK P = (-1)1 = -1 q (or hc2) c q D* c D*0 or D*- Spin=1 yc2 (hc2)DD* doesn’t violate parity

11 yc2 & hc2 are expected to be below mD+mD* threshold

12 Belle: search for yc2 in BKyc2K(p+p-J/y)
Eichten et al: PRL 98, (2002) c _ yc2 p+p- J/y?? B meson y’p+p-J/y s q _ K yc2??? M(p+p- J/y)-M(J/y) Belle PRL 91, (2003)

13 X(3872) MX=3872.0±0.6 MeV G<2.3 MeV Belle PRL 91, (2003)

14 X3872 is well established seen in 4 experiments
CDF 9.4s 11.6s X(3872) D0 BaBar X(3872)

15 “Look for Xg cc1, you should
Is the X(3872) the yc2? Bf(yc2g cc1) Bf(yc2p+p-J/y) Eichten et al: PRL 98, (2002) >5 “Look for Xg cc1, you should be flooded by events” Eichten

16 Belle search for X(3872)gcc1
Belle PRL 91, (2003) 3872 Bf(yc2g cc1) Bf(yc2p+p-J/y) <0.9 The X(3872) is not the yc2!!

17 If not yc2, what??? Agreement  Contradiction 
Look for other decay modes: X(3872) g J/y ? X(3872) g y’? BaBar 2009: BaBar 2009: Yes Yes Agreement  Contradiction  PRL 102, Belle 2010: Belle 2010: Yes No V. Bhardwaj QWG 2010

18 C(X3872) = + C(X3872) must be (-)(-) = + X3872 g J/y
if C(X3872) is + : p+p- system in X3872p+p- J/y must come from rp+p- p+ C = - r Belle agrees CDF agrees p- X3872 rp+p- lineshape J/y C = - M(p+p- ) M(p+p- )

19 JPC of X3872 0-+ ?? p+ r p- p* X3872 J/y mutually perpendicular m+ p+
0-+ ?? spin polarization vectors p+ r p- p* X3872 J/y mutually perpendicular m+ p+ m- p-

20 Does the X(3872) JPC = 0-+ ?? 0-+ !!! No, the X(3872) cannot be 0-+

21 Does the X(3872) JPC = 1++ ?? B mutually perpendicular X(3872) K S=0
Sx=0

22 1++ fits well Belle Data

23 CDF angular correlation analysis
Only 1++ or 2-+ fit data PRL 1++ no adj. params 2- + 2 adj. 2arams 1- - O++ 1++ fits well with no adjustable parameters 2-+ looks like 1++ for , at least with current statistics

24 a 1++ cc state for the X3872? _ c’ c.f.: G(y’p0J/y)≈0.4 keV ‘
set by: Mcc2=3930 MeV Mass is too low? 3872 vs 3905 MeV G(cc1  g y’) ~180 keV G(cc1  g J/y) ~14 keV G(g y’)/G( g J/y)>>1 c’ c1 T.Barnes et al PRD 72, Gp+p- J/y =(3.4±1.2) GgJ/y~45 keV huge for Isospin-violating decay c.f.: G(y’p0J/y)≈0.4 keV

25 a 2-+ cc state for the X3872? _ hc2 BKhc2 violates factorization
set by: My”=3770 MeV Mass is too high? 3872 vs 3837 MeV T.J. Burns et al arXiv: G(hc2  g y’) ~0.4 keV G(hc2  g J/y) ~9 keV G(hc2 g y’)/G(hc2 g J/y)<<1 Y. Jia et al arXiv: hc2 Gp+p- J/y =(3.4±1.2) GgJ/y ~30 keV huge for Ispin-violating decay c.f.: G(y’p0J/y)≈0.4 keV BKhc2 violates factorization BKhc not seen BKcc2 barely seen hc2  DD* expected to be tiny Belle & BaBar: G(XDD*)/G(XppJ/y)=9.5±3.1 Y. Kalasnakova et al arXiv:

26 If not charmonium, what is it?

27 CDF X(3872)p+p- J/y Mass MX = 3871.61 ± 0.16 ± 0.19 MeV
recent results ~6000 events! arXiv: MX = ± 0.16 ± 0.19 MeV

28 M X(3872) ≈ MD0 +MD*0 <MX>= 3871.46 ± 0.19 MeV
new Belle meas. new CDF meas. MD0 + MD*0 3871.8±0.4 MeV dm = ± 0.41 MeV

29 X(3872) looks like a D0D*0 “molecule”
N. Tornqvist Z. Phys C 61, 525 (1994) predicted by Tornqvist in 1994, requires: JPC = 1++ or 0-+

30 States near 3940 MeV

31 Search for other states in BK p+p-p0 J/y decays
_ J/y B meson wp+p-p0 s q _ K

32 M(w J/y) Y(3940) Y3940 p+p-p0J/y?? w M=3940 ± 11 MeV G= 92 ± 24 MeV
unexpected peak at 3940 MeV Y3940 p+p-p0J/y?? Y(3940) w M=3940 ± 11 MeV G= 92 ± 24 MeV S.-K. Choi et al (Belle) PRL94, (2005)

33 Y(3940) confirmed by BaBar B±K±wJ/y B0KSwJ/y ratio M(wJ/y)
PRL 101, Some discrepancy in M & G; general features agree

34 Belle-BaBar direct comparison
Same binning (Belle published result : 253 fb-1) 492fb-1 Belle will update with the complete (4S) date set later this Fall

35 _ Does Y(3940)  DD* ? _ BKDD* 3940 MeV 3940 MeV No signal:

36 Study e+e-  J/y + anything
detected J/y e+ e- J/y recoil system is undetected Recoil Mass:

37 s(e+e- J/y+cc) unexpectedly big
_ Unexpected peak at 3940 MeV e+e- J/y+hc

38 Use “partial reconstruction” to study X3940 DD or DD*
_ _ J/y e+ e- reconstruct these _ “Recoil” D(*) undetected (inferred from kinematics) _ _ _ D (or D*) D (or D*)

39 X(3940) DD* is large _ _ _ M = 3942 +7 ± 6 MeV -6
Gtot = ±12 MeV Nsig = ± 11evts -6 -15 _ _ -16 e+e-  J/y + DD* arXiv: PRL 98, (2007) Bg subtracted

40 Use “partial reconstruction” to search for X(3940)wJ/y
“Recoil” J/y undetected (inferred from kinematics) reconstruct these p J/y p p w3p 3940 MeV no signal:

41 X3940 & Y3940 are not the same from: from: e+e- J/y DD* & J/y wJ/y
_ from: B K wJ/y & KDD* _

42 M(D*D*) has a peak too _ _ _ It has to have C=+; most likely 0-+
e+e-  J/y D* D* M = ± 15 MeV Gtot = ± 21MeV Nsig = ± 11evts -20 -61 -8 arXiv: _ It has to have C=+; most likely 0-+

43 cc assignments for X(3940), Y(3915) & X(4160)?
_ hc’’’ 4160MeV hc” cc0’ 3940MeV 3915MeV Y(3915) = cco’? G(wJ/y) too large? X(3940) = hc”?  mass too low? X(4160) = hc”?  mass too high? X(4160) = hc”’?  mass much too low?

44 1- - states seen via “radiative return”
“initial-state-radiation” photon: gISR kg 1- - E’ Ecm if kg = 3.8~4.5 GeV, E’ = 3~5GeV

45 Radiative return Ecm(GeV) B-factory energies g ss cc bb 3~5 GeV

46 e+e-  gisr Y(4260) at BaBar p+p- J/y BaBar PRL95, 142001 (2005)
fitted values: 233 fb-1 M=4259  8 +2 MeV G = 88  MeV -6 -9 Y(4260) ~50pb

47 “(4260) confirmed by Belle BaBar values: M=4247  12 +17 MeV -32
G = 108  19 ±10 MeV -32 M=4259  8 +2 MeV G = 88  MeV -6 -9 M=4008  MeV G = 226  44 ±87 MeV -28 ??? C.Z Yuan et al (Belle) PRL 99,

48 Not seen in e+e-  hadrons
J.Z.Bai et al (BES), PRL 88, (2006) s(e+e- hadrons) s(e+e-  m+m-) No sign of Y(4260)D(*)D(*) 4260 speak(Y(4260)+p-J/)~50 pb ~3nb Huge by charmonium standards BES data G(Y4260p+p- J/y) > 90% CL X.H. Mo et al, PL B640, 182 (2006)

49 cc assignment for the Y(4260)??
only unfilled 1- - state left 33D1 4260MeV Y(4260) = 33D1?  mass too low & G(p+p-J/y) too large

50 another peak in e+e-  gISRp+p- y’
BaBar M=4324  24 MeV G = 172  33 MeV Peak is 4324 MeV, distinct from 4260 MeV

51 4325 MeV p+p-y’ peak in Belle
Two peaks! (both relatively narrow) (& neither consistent with 4260) M=4361  9 ±9 MeV G = 74  15 ±10 MeV M=4664  11 ±5 MeV G = 48  15 ±3 MeV 4260 BaBar values M=4324  24 MeV G = 172  33 MeV X.L. Wang et al (Belle) PRL 99, (2007) 548 fb-1

52 At least three peaks for only one empty level
4664MeV 33D1 4361MeV 4260MeV

53 exclusive e+e- gISRD(*)D(*) channels

54 Sum of all exclusive contributions
DD DD* D*D* DDπ Sum of all exclusive contributions DD*π Λ+c Λc Only small room for unaccounted contributions Charm strange final states Limited inclusive data above 4.5 GeV Charm baryons final states Phi to Psi 2009 Galina Pakhlova

55 Experiment for BES III?: Search for other Y(4260) modes
Scan the 4260 ± 100 MeV region & measure dominant channels to ± 1% DD* D*D* s  2nb 20 points  ~1 year of BES III data taking

56 The Z(4430)+  p+y’ “smoking gun” for a four quark meson?
B0 K- B0

57 BK±p y’ (in Belle) ?? M2(p+y’) K*(1430)K+p-? K*(890)K+p- M2(K+p-)

58 The Z(4430)± p±y’ peak “K* Veto” Z(4430) BK p+y’ M2(p±y’) GeV2
M (Kp’) GeV Z(4430) M2(p±y’) GeV2 M(p±y’) GeV M2(Kp’) GeV2 “K* Veto”

59 Shows up in all data subsamples

60 Could the Z+(4430) be due to a reflection from the Kp channel?

61 Cos qp vs M2(py’) p qp +1.0 M2(py’) cosqp -1.0
K +1.0 22 GeV2 (4.43)2GeV2 0.25 M2(py’) cosqp 16 GeV2 -1.0 M (py’) & cosqp are tightly correlated; a peak in cosqp  peak in M(py’)

62 S- P- & D-waves cannot make a peak (+ nothing else) at cosqp≈0.25
not without introducing other, even more dramatic features at other cosqp (i.e., other Mpy’) values.

63 HW p qp y’ K Compute the relation between cosqp and M2(py’)

64 But…

65 BaBar doesn’t see a significant Z(4430)+
“For the fit … equivalent to the Belle analysis…we obtain mass & width values that are consistent with theirs,… but only ~1.9s from zero; fixing mass and width increases this to only ~3.1s.” Belle PRL: (4.1±1.0±1.4)x10-5

66 Reanalysis of Belle’s BKpy’ data using Dalitz Plot techniques

67 2-body isobar model for Kpy’
Our default model ky’ K*(890)y’ K*(1410)y’ K0*(1430)y’ K2*(1430)y’ K*(1680)y’ KZ+ K*y’ B K2*y’ Kpy’ KZ+

68 Results with no KZ+ term
2 1 1 2 3 4 5 C B A 3 4 A B 5 C fit CL=0.1% 51

69 Results with a KZ+ term 2 1 B 1 2 3 4 5 A 3 4 C B C A 5 fit CL=36%

70 Compare with PRL results
K* veto applied With Z(4430) Signif: s Published results Without Z(4430) Mass & significance similar, width & errors are larger BaBar: Belle: = ( )x10-5 No big contradiction

71 Variations of the model
Z(4430)+ significance Others: Blatt f-f term 0r=1.6fm4fm; Z+ spin J=0J=1; incl K* in the bkg fcn

72 HW Devise strategies to determine JP of the Z(4430)+ p JP=0- JP=0-
B K Spin=0 y’ JP=1- Are any JP values immediately ruled out? Can we use parity conservation? For which decays?

73 The Z1(4050)+ & Z2(4250)+ p+cc1 peaks
R. Mizuk et al (Belle), PRD 78, (2008)

74 Dalitz analysis of B0K-p+cc1
DE GeV ??? G K3*(1780) K*(890) K*(1680) K*(1400)’s M (J/yg) GeV

75 BKpcc1 Dalitz-plot analyses
Default Model kcc1 K*(890)cc1 K*(1410)cc1 K0*(1430)cc1 K2*(1430)cc1 K*(1680)cc1 K3*(1780)cc1 KZ+ K*cc1 B K2*cc1 Kpcc1 KZ+

76 Fit model: all low-lying K*’s (no Z+ state)
b c d g f e a b e f c d g C.L.=310-10

77 Fit model: all K*’s + one Z+ state
b c d g f e a b e f c d g C.L.=0.1%

78 Are there two? ? ? ? ? a b c d

79 Fit model: all K*’s + two Z+ states
b c d g f e a b e f c d g C.L.=42%

80 Two Z-states give best fit
Projection with K* veto

81 Systematics of B0 → K- π+ c1 fit
M=1.04 GeV; G=0.26 GeV Significance of Z1(4050)+ and Z2(4250)+ is high. Fit assumes JZ1=0, JZ2=0; no signif. improvement for JZ1=1 &/or JZ2=1.

82 Z states cannot be charmonium
d Need confirmation from other experiments (CDF? … D0?)

83 Are there XYZ counterparts in the b- and s-quark sectors?
What about here? 233 fb-1 Y(4260)

84 b-quark threshold region

85 Belle: G((4S)p+p-(1S))
477 fb-1 2S 3S 4S (4S)  (1S) p+p- 52±10 evts N(4S) N(p+p-1S) B(Y4Spp1S) G(Y4Spp1S) Gtheory 535x106 52±10 9 ± 2 x10-5 1.75 ± 0.35 keV 1.47±0.03 keV

86 Belle: G(5Sp+p-1S) 1/20th the data & 1/10th the cross-section
23.6 fb-1 325±20 evts! 1/20th the data & 1/10th the cross-section >6 times as many events!! K.F. Chen et al (Belle) PRL 100, (2008)

87 Assuming the source is the (5S)
Partial Widths Assuming the source is the (5S) PDG value taken for (nS) properties N.B. Resonance cross section ± nb at GeV PRD 98, (2007) [Belle] >300 times bigger than that for the 4S!! c.f. (2S)  (1S) p+p- ~ 6 keV (3S) keV (4S) keV

88 Are these events from the 5S?
s(e+e-  p+p-nS ) from a cm energy scan Fitted parameters 5S peak position PDG(5S): K.F. Chen et al (Belle) arXiv:

89 Peak & width in p+p-(nS) different from (5S) &(6S)
e+e-p+p-Y(nS) Simplest interpretation: b-quark-sector equivalent to the c-quark-sector’s Y(4260) e+e-  hadrons

90 Y(4260) equivalent with s-quarks?
e+e-  g f0(980)f Y(2175)f0(980)f s(e+e-  p+p- f(1020)) BaBar f0(980)p+p- M(f0(980)f) BaBar, PRD 74,

91 Confirmed by BES & Belle
confirmed by BESII in J/y  h f f0(980) s(e+e-  f0(980)f(1020)) BES Belle M(f0(980)f GeV C.P.Shen et al (Belle) arXiv: M.Ablikim et al (BES) PRL 100, (2008)

92 The “XYZ” mesons

93 Concluding remarks Charmonium mesons are strong evidence for quarks
All the lowest-lying charmonium states have been found Good agreement between their measured properties & theory Charmonium is the “best understood” hadronic system Higher-mass charmonium meson searches have produced surprizes A number of non-charmonium meson candidates have been found. They have strong transitions to ordinary charmonium states Corresponding states sem to exist in the b-qyark & s-quark sectors Most of the new states are in the BEPC-II Ecm range We have to figure out how to access them (& find new ones) So far only final states with a J/y or y’ have been studied e.g., final states with an hc or a hc may be interesting Lots of opportunities for BES III Need creativity and new ideas

94 Thank You 謝謝 감사합니다


Download ppt "Charmonium experimental overview"

Similar presentations


Ads by Google