Presentation is loading. Please wait.

Presentation is loading. Please wait.

Elements of Quantum Mechanics

Similar presentations


Presentation on theme: "Elements of Quantum Mechanics"β€” Presentation transcript:

1 Elements of Quantum Mechanics
Chapter 2 Elements of Quantum Mechanics Classical (Newtonian) mechanics is inaccurate when applied to electrons in crystals or any systems with atomic dimensions. Quantum mechanics is necessary background knowledge for understanding electrons in crystals.

2 THE QUANTUM CONCEPT Blackbody Radiation 𝐡 Ξ» = 2π‘π‘˜π‘‡ Ξ»4 𝐸𝑛=π§β„Žπœˆ=π‘›β„πœ”
An opaque non-reflective ideal body classical model, assuming continuum of allowed energy (valid for long wave length) 𝐡 Ξ» = 2π‘π‘˜π‘‡ Ξ»4 real observation explained by Max Planck, assuming discrete energy spectrum 𝐸𝑛=π§β„Žπœˆ=π‘›β„πœ” 𝐧=0, 1, 2, 3,……… 𝐡 Ξ» = 2β„Žπ‘2 Ξ»5 1 𝑒 β„Žπ‘/Ξ»π‘˜π‘‡ βˆ’1 Vibrating atoms in a material can only radiate or absorb energy in discrete packets (energy quantization) Ξ» (πœ‡m)

3 The Bohr Atom 𝐿𝑛=π‘š0Κ‹ π‘Ÿ 𝑛 =𝒏ℏ For the simple hydrogen atom with Z = 1,
Postulations: Electrons exist in certain stable circular orbits. Electrons can shift between orbitals by gaining or losing energy. Angular momentum is quantized. 𝐿𝑛=π‘š0Κ‹ π‘Ÿ 𝑛 =𝒏ℏ 𝐧=1, 2, 3,……… centripetal force βˆ’π‘ž +π‘ž π‘Ÿπ‘› 𝐧=1 𝐧=2 𝐧=3 = π‘š0Κ‹2 π‘Ÿπ‘› Continuous energy radiation electromagnetic radiation Coulombl force = π‘ž2 4πœ‹πœ–0 π‘Ÿ 𝑛 2 Classically, accelerating charge radiates electromagnetic wave.

4 π‘Ÿπ‘›= 4πœ‹πœ–0 𝒏ℏ 2 π‘š0π‘ž2 π‘š0Κ‹2 π‘Ÿπ‘› = π‘ž2 4πœ‹πœ–0 π‘Ÿ 𝑛 2 P.E = - π‘ž2 4πœ‹πœ–0π‘Ÿπ‘›
π‘š0Κ‹2 π‘Ÿπ‘› = π‘ž2 4πœ‹πœ–0 π‘Ÿ 𝑛 2 K.E = 1 2 π‘š0Κ‹2= 1 2 ( π‘ž2 4πœ‹πœ–0π‘Ÿπ‘› ) P.E = - π‘ž2 4πœ‹πœ–0π‘Ÿπ‘› E = K.E + P.E 𝐸𝑛=βˆ’ π‘š0π‘ž4 2 4πœ‹πœ–0𝒏ℏ 2 =βˆ’ 𝒏2 𝑒𝑉

5 Wave-Particle Duality
Light: wave nature (diffraction, refraction, interference….) particle nature (photoelectric effect, Compton effect) called β€œphoton” Electron: particle nature (m0, q ….) wave nature (SEM, TEM, diffraction, refraction, interference…) De Broglie’s matter wave: All particles have the properties of wave. Ξ»= β„Ž π‘šΚ‹ p= β„Ž Ξ» de Broglie’s hypothesis Low dimensional materials (2D, 1D) in terms of electrical properties: size of reduced dimensions approaches Ξ» of electron

6 One-electron SchrΓΆdinger equation
General Formulation There exist a wavefunction, Ξ¨(x, y, z, t), describing the dynamic behavior of the system. mathematically complex quantity (2) Ξ¨ and 𝛻Ψ must be continuous, finite, and single-valued for all values of x, y, z, and t. not single-valued not continuous not finite (3) Ξ¨βˆ—Ξ¨dV = Ξ¨ 2 dV : the probability that the particle will be found in the spatial volume element dV. Ξ¨βˆ—Ξ¨dV = 1: normalization

7 (4) There is a unique mathematical operator with each dynamic variable
such as position or momentum. The expectation value can be obtained by operating on the wavefunction. <𝛼> = 𝑉 Ξ¨βˆ—π›Όπ‘œπ‘Ξ¨dV < 𝑝 π‘₯ > = 𝑉 Ξ¨βˆ—( ℏ 𝑖 πœ• πœ•π‘₯ Ξ¨)dV =β„π‘˜ 𝑉 Ξ¨βˆ—Ξ¨dV =β„π‘˜ <π‘₯> = 𝑉 Ξ¨βˆ—π‘₯ Ξ¨dV If Ξ¨ = ej(kx - πœ”π‘‘) <𝐸> = 𝑉 Ξ¨βˆ—(βˆ’ ℏ 𝑖 πœ• πœ•π‘‘ Ξ¨)dV =β„πœ” 𝑉 Ξ¨βˆ—Ξ¨dV =β„πœ”

8 Where does operator come from?
For plane wave solution( or harmonic solutions of the wave): Ξ¨ = Cei(kx – πœ”t) operator πœ•Ξ¨ πœ•π‘₯ =π‘–π‘˜Ξ¨ ℏ 𝑖 πœ•Ξ¨ πœ•π‘₯ =β„π‘˜Ξ¨ expectation value πœ•2Ξ¨ πœ•π‘₯2 =βˆ’ π‘˜2Ξ¨ βˆ’ ℏ2 2π‘š πœ•2Ξ¨ πœ•π‘₯2 = ℏ2π‘˜2 2π‘š Ξ¨ πœ•Ξ¨ πœ•π‘‘ =βˆ’ π‘–πœ”Ξ¨ βˆ’ ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ =β„πœ”Ξ¨ Time-independent Formulation E = K.E + P.E βˆ’ 𝑃2 2 π‘š 0 +π‘ˆ π‘₯, 𝑦, 𝑧 =𝐸:π‘π‘™π‘Žπ‘ π‘ π‘–π‘π‘Žπ‘™ 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› In operator form with Ξ¨ βˆ’ ℏ2 2 π‘š 0 𝛻2+π‘ˆ(π‘₯, 𝑦, 𝑧, 𝑑)) Ξ¨=βˆ’ ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ time-dependent SchrΓΆdinger equation 𝐻 Ξ¨=βˆ’ ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ =𝐸Ψ Hamiltonian operator

9 (3’) ψand π›»Οˆmust be continuous, finite, and single-valued
βˆ’ ℏ 𝑖 πœ•Ξ¨ πœ•π‘‘ =𝐸Ψ 𝑉 Ξ¨βˆ—(βˆ’ ℏ 𝑖 πœ• πœ•π‘‘ Ξ¨)dV =𝐸 𝑉 Ξ¨βˆ—Ξ¨dV =𝐸:π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ The equation has the solution of the form Ξ¨ π‘₯, 𝑦, 𝑧, 𝑑 = ψ π‘₯, 𝑦, 𝑧 𝑒 βˆ’π‘–πΈπ‘‘/ℏ Substituting this into time dependent equation and by using separation of variables. 𝛻2ψ+βˆ’ 2 π‘š 0 ℏ2 [ 𝐸 βˆ’π‘ˆ π‘₯, 𝑦, 𝑧 ]ψ=0 time-independent SchrΓΆdinger equation (3’) ψand π›»Οˆmust be continuous, finite, and single-valued for all values of x, y, and z. (4’) Ξ¨βˆ—Ξ¨=Οˆβˆ—ΟˆdV = ψ 2 dV : the probability that the particle will be found in the spatial volume element dV. Likewise 𝑉 Οˆβˆ—ΟˆdV = 1 (5’) The expectation value of the system variable 𝛼 is given by <𝛼> = 𝑉 Οˆβˆ—π›Όπ‘œπ‘ΟˆdV

10 q β„° ( r , t) = 𝛻(-qV) = 𝛻U( r , t)
The Ξ¨ for a given system and specified system constraint is determined by solving the time dependent SchrΓΆdinger wave equation, Classically, the position ( π‘Ÿ )=(x, y, z) of an electron in an electric field β„° ( π‘Ÿ , t) = β„° π‘₯, 𝑦, 𝑧, 𝑑 evolves with time (t) according to Newton’s second law. π‘š 0 𝑑 2 π‘Ÿ 𝑑𝑑 = - q β„° ( r , t) Quantum mechanical descriptions are always in terms of potentials rather than electric field. q β„° ( r , t) = 𝛻(-qV) = 𝛻U( r , t) Quantum mechanically, the dynamics of an individual electron is described by the one-electron SchrΓΆdinger equation. βˆ’ ℏ 2 2 π‘š 0 𝛻2 Ξ¨ 0 (x, y, z, t) + U(x, y, z, t) Ξ¨ 0 (x, y, z, t) = iℏ πœ• πœ•π‘‘ Ξ¨ 0 (x, y, z, t) or βˆ’ ℏ 2 2 π‘š 0 𝛻2 Ξ¨ 0 ( r , t) + U( r , t) Ξ¨ 0 ( r , t) = iℏ πœ• πœ•π‘‘ Ξ¨ 0 ( r , t)

11 U( r , t) = U 𝐿 ( r ) + U 𝑆 ( r , t) + U 𝐸 ( r , t)
The potential energy can be separated into a macroscopic part and a microscopic part. U( r , t) = U 𝐿 ( r ) + U 𝑆 ( r , t) + U 𝐸 ( r , t) U 𝐸 ( r , t) : potential from macroscopic electric fields due to any externally applied voltage and/or macroscopic space charge U 𝐿 ( r , t) : potential from microscopic electric fields due to a perfect static lattice U 𝑆 ( r , t) : called scattering potential random fluctuating potential from microscopic electric fields from defects and impurities (impurity scattering), or phonons (phonon scattering), electron-electron scattering(electron-electron scattering)

12 Effective mass equation
If we consider only the periodic potential (neglecting US and UE), the solutions to the SchrΓΆdinger equation can be written in the form of Bloch waves. U 𝐿 ( r ) The wavefunction of an electron in a band Ξ½ with wave vector π‘˜ is written as Ξ¨ 0 ( r ,𝑑) = 𝑒 Ξ½,π‘˜ r exp(𝑖 k βˆ™ r )exp(βˆ’π‘– 𝐸 Ξ½ ( k )𝑑/ℏ) Ξ¨ 0 ( r ) = 𝑒 Ξ½,π‘˜ r exp(𝑖 k βˆ™ r ) the form of (plane wave) Γ— (function with the periodicity of the Bravais lattice) where 𝑒 Ξ½,π‘˜ π‘Ÿ is a periodic function with the same period as the lattice potential U 𝐿 ( r ) that is different for each Ξ½ and each π‘˜ . Use the plane waves to expand the envelope function Ξ¨( r ,𝑑). Ξ¨ r ,𝑑 = π‘˜ ψ π‘˜(t) exp(𝑖 k βˆ™ r ) Ξ¨ 0 r ,𝑑 β‰ˆ 𝑒 Ξ½,π‘˜ r Ξ¨ r ,𝑑 The true wavefunction is the approximately equal to the product of the periodic part of the Bloch wavefunction, u r and the envelope Ξ¨ r ,𝑑 .

13 iℏ πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = 𝐸 Ξ½ k Ξ¨ r , 𝑑 + (U 𝑆 ( r , t) + U 𝐸 ( r , t))Ξ¨ r , 𝑑
iℏ πœ• πœ•π‘‘ Ξ¨ 0 ( r , t) = iℏ 𝑒 Ξ½,π‘˜ r πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = iℏ 𝑒 Ξ½,π‘˜ r (βˆ’ i ℏ )Ξ¨ r , 𝑑 = 𝑒 Ξ½,π‘˜ r 𝐸 Ξ½ k Ξ¨ r , 𝑑 Including US and UE, (U 𝑆 ( r , t) + U 𝐸 ( r , t))Ξ¨ 0 ( r , t)= 𝑒 Ξ½,π‘˜ r (U 𝑆 ( r , t) + U 𝐸 ( r , t))Ξ¨ r , 𝑑 Then, the SchrΓΆdinger equation is reduced to the equation called effective mass equation. iℏ πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = 𝐸 Ξ½ k Ξ¨ r , 𝑑 + (U 𝑆 ( r , t) + U 𝐸 ( r , t))Ξ¨ r , 𝑑 or iℏ πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = 𝐸 Ξ½ βˆ’ 𝑖𝛻 Ξ¨ r , 𝑑 + (U 𝑆 ( r , t) + U 𝐸 ( r , t))Ξ¨ r , 𝑑 For a conduction band with a parabolic dispersion law, 𝐸 𝑐 k = 𝐸 π‘π‘œ + ℏ 2 π‘˜ 2 2 π‘š βˆ— iℏ πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = - ℏ 2 2 π‘š βˆ— 𝛻 2 Ξ¨ r , 𝑑 + ( 𝐸 π‘π‘œ + U 𝑆 ( r , t) + U 𝐸 ( r , t))Ξ¨ r , 𝑑 iℏ πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = - ℏ 2 2 π‘š βˆ— 𝛻 2 Ξ¨ r ,𝑑 + 𝐸 𝑐 ( r , t)Ξ¨ r , 𝑑 + U 𝑆 ( r , t)Ξ¨ r , 𝑑 Where Ec = Ec0 + UE is the band edge energy we usually draw when draw band diagrams for devices.

14 n( r , t) = <Ξ¨βˆ— r ,𝑑 Ξ¨ r , 𝑑 >
The electron density n that is obtained by summing the probability densities Ξ¨βˆ—Ξ¨, of all the electrons n( r , t) = <Ξ¨βˆ— r ,𝑑 Ξ¨ r , 𝑑 > does not reflect the periodic variations at the atomic level (we have used < > to denote summation over all the electrons. This is expected since the periodic lattice potential does nor appear in the effective mass equation that is used to calculate Ξ¨. In contrast, the electron density n0 obtained from the true wavefunction Ξ¨0 will be peaked near the ion cores; n( r , t) is a smoothed out version of n0( r , t) in which the rapid variations over a unit cell are averaged out. The current density, 𝐽 ( r , t) = βˆ’π‘–π‘žβ„ 2 π‘š βˆ— < (𝛻Ψ) βˆ— Ξ¨ - Ξ¨βˆ—(𝛻Ψ)Ξ¨ > The current continuity equation, π›»βˆ™ 𝐽 ( r , t) - q πœ•π‘› πœ•π‘‘ = 0 Prove these three equations as homework.

15 In the effective mass equation,
iℏ πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = - ℏ 2 2 π‘š βˆ— 𝛻 2 Ξ¨ r , 𝑑 r ,𝑑 + 𝐸 𝑐 ( r , t)Ξ¨ r , 𝑑 + U 𝑆 ( r , t)Ξ¨ r , 𝑑 US : random microscopic potential Ec : potential due to externally applied voltage and/or macroscopic space charges The macroscopic potential Ec has to be determined from the Poisson equation. For electrons in the conduction band, 𝛻 2 𝑉 𝐸 = π‘ž πœ– (𝑁 𝐷 + - n) 𝑉 𝐸 is the electrostatic potential (= - UE/q) 𝑁 𝐷 + is the density of ionized donors In quantum device analysis, instead of calculating the electron density and the current density from the β€œdrift-diffusion” equation, we have to calculate it from the equations n( r , t) and 𝐽 ( r , t) after solving for the wavefunction Ξ¨ r , 𝑑 from the effective mass equation.

16 iℏ πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = - ℏ 2 2 π‘š βˆ— 𝛻 2 Ξ¨ r , 𝑑 r ,𝑑 + 𝐸 𝑐 ( r , t)Ξ¨ r , 𝑑
Assuming a perfect crystal with no scattering due to impurities and phonons (US = 0), the effective mass equation becomes iℏ πœ• πœ•π‘‘ Ξ¨ r , 𝑑 = - ℏ 2 2 π‘š βˆ— 𝛻 2 Ξ¨ r , 𝑑 r ,𝑑 + 𝐸 𝑐 ( r , t)Ξ¨ r , 𝑑 The simplest case corresponds to a constant EC equal to EC0. The solutions can be written as, Ξ¨ r , 𝑑 = Cexp(𝑖 k βˆ™ r )exp(βˆ’π‘–πΈ( k )𝑑/ℏ) = Cexp(𝑖 k x x)exp(𝑖 k y y)exp(𝑖 k z z)exp(βˆ’π‘–πΈ( k )𝑑/ℏ) Normalization constant C is a constant with the dimension of (volume)-1/2. This is necessary in order that Ξ¨βˆ—Ξ¨ have the same units as the electron density. The wavefunction satisfies the effective equation for any k , provided E is given by E = E π‘π‘œ + ℏ 2 2 π‘š βˆ— ( k x k y k z 2 ) called the dispersion relation. n( r , t) = <Ξ¨βˆ— r ,𝑑 Ξ¨ r , 𝑑 > = < 𝐢 2 > 𝐽 ( r , t) = βˆ’π‘–π‘žβ„ 2 π‘š βˆ— < (𝛻Ψ) βˆ— Ξ¨ - Ξ¨βˆ—(𝛻Ψ)Ξ¨ > = π‘žβ„ k π‘š βˆ— < 𝐢 2 > k = π‘₯ k x + 𝑦 k y + 𝑧 k z

17 E = E π‘π‘œ + ℏ 2 2 π‘š βˆ— ( k x 2 + k y 2 + k z 2 ) = p 2 2 π‘š βˆ—
In classical relation, 𝐽 = - nq 𝑣 If we interpret ℏ k as the momentum p p = m βˆ— 𝑣 = ℏ k Momentum is a β€œparticle” concept while the wavevector k is a β€œwave” concept. The dispersion relation, which is wave concept, can also be interpreted in particle-like terms: E = E π‘π‘œ + ℏ 2 2 π‘š βˆ— ( k x k y k z 2 ) = p 2 2 π‘š βˆ— total energy potential energy kinetic energy If EC is varying along the x-direction, but is constant in the other two dimensions y and z and in time t, then we can write. Ξ¨ r , 𝑑 = Cψ(x)(𝑖 k y y)exp(𝑖 k z z)exp(βˆ’π‘–πΈπ‘‘/ℏ) d 2 ψ(x) dx π‘š βˆ— ℏ 2 E(x) ψ(x) = 0 E (x) =E βˆ’ E 𝐢 (x) - ℏ 2 2 π‘š βˆ— ( k y k z 2 ) where

18 SIMPLE PROBLEM SOLUTIONS
Free Particle (Electron in Free Space) U(x, y, z) = 0, more generally U(x, y, z) = constant with total energy E and mass m no force acting on the particle In 1-D, time-independent SchrΓΆdinger equation 𝑑 2 ψ 𝑑 π‘₯ π‘šπΈ ℏ2 ψ=0 By introducing the constant, k ≑ 2 π‘š 0 E/ ℏ 2 or equivalently E= ℏ 2 k 2 2 π‘š 0 = < p π‘₯ >2 2 π‘š 0 Solution becomes ψ π‘₯ = 𝐴 + 𝑒 𝑖 π‘˜ π‘₯ π‘₯ + 𝐴 βˆ’ 𝑒 βˆ’π‘– π‘˜ π‘₯ π‘₯ Recalling the relationship, Ξ¨ π‘₯, 𝑦, 𝑧, 𝑑 = ψ π‘₯, 𝑦, 𝑧 𝑒 βˆ’π‘–πΈπ‘‘/ℏ Ξ¨ π‘₯, 𝑑 = 𝐴 + 𝑒 𝑖( π‘˜ π‘₯ π‘₯βˆ’ 𝐸𝑑 ℏ ) + 𝐴 βˆ’ 𝑒 βˆ’π‘–( π‘˜ π‘₯ π‘₯+ 𝐸𝑑 ℏ ) Traveling wave moving (-) x-direction Traveling wave moving (+) x-direction

19 Traveling wave (plane wave)
Electron in free space Traveling wave (plane wave) particle Ξ» π‘˜ x = 2πœ‹ Ξ» : Expectation value of momentum for free particle wave number The phase of the wave, π‘˜ π‘₯ π‘₯ –Et/ℏ = constant < 𝑝 π‘₯ > = βˆ’βˆž ∞ Οˆβˆ— ℏ 𝑖 𝑑 𝑑π‘₯ ψ dx =β„π‘˜ βˆ’βˆž ∞ Οˆβˆ—Οˆdx = ℏ π‘˜ π‘₯ = β„Ž Ξ» 𝑑 𝑑𝑑 π‘˜ π‘₯ π‘₯ βˆ’ 𝐸𝑑 ℏ =0 de Broglie’s hypothesis Expectation value of the momentum for a free particle is exact , because βˆ†x = ∞ and hence βˆ† p = 0. π‘˜ π‘₯ 𝑑π‘₯ 𝑑𝑑 = π‘˜ π‘₯ Κ‹= 2πœ‹ Ξ» 𝜈λ=2πœ‹πœˆ=πœ”= 𝐸 ℏ From classical mechanics From wave mechanics E= 𝑝 2 2 π‘š 0 = π‘š 0 𝑣2 2 E= ℏ 2 π‘˜ 2 2 π‘š 0 = < 𝑝 π‘₯ >2 2 π‘š 0 continuous energy spectrum Identical because βˆ† p = 0 for free particle.

20 Potential Step What is the fraction R of the incident current that is reflected and what is the fraction T that is transmitted? Neglecting band bending due to space-charge effects, βˆ† E 𝑔 =βˆ† E 𝐢 + βˆ† E 𝑉 J π‘Ÿ =R J 𝑖 J 𝑑 =T J 𝑖 A beam of light with frequency πœ” carrying Pi watts/m2 is incident from medium 1 on medium 2. P π‘Ÿ =R P 𝑖 P 𝑑 =T P 𝑖 R +T = 1

21 T is function of function of electron energy.
Classical device analysis from Newton’s law, electrons are viewed as particles. if E > βˆ†EC, R = 0 and T = 1. The electrons are slowed down as they cross the interface since the up-step in potential energy βˆ† EC is equivalent to a retarding field. But as long as E > βˆ† EC the electrons are completely transmitted with no reflection. if E < βˆ†EC, R = 1 and T = 0. The electrons are completely turned around.

22 d 2 ψ(x) dx 2 + 2 π‘š βˆ— ℏ 2 E(x) ψ(x) = 0
Quantum mechanically, we have to view the electron as a wave obeying the effective mass equation. We have to solve the one-dimensional effective mass equation. d 2 ψ(x) dx π‘š βˆ— ℏ 2 E(x) ψ(x) = 0 E (x) =E βˆ’ E 𝐢 (x) - ℏ 2 2 π‘š βˆ— ( k y k z 2 ) with E 𝐢 (x) = E 𝐢1 , x<0 = E 𝐢2 , x>0 E(x) = E 1 , x<0 where E1=E βˆ’ E 𝐢 ℏ 2 2 π‘š βˆ— ( k y k z 2 ) = E 2 , x>0 E2=E βˆ’ E 𝐢 ℏ 2 2 π‘š βˆ— ( k y k z 2 )

23 ψ(x) = exp(i k 1 x) + rexp(βˆ’i k 1 x), x < 0 k 1 = 2 π‘š βˆ— E 1 /ℏ
On the left, we have an incident and a reflected wave ψ(x) = exp(i k 1 x) + rexp(βˆ’i k 1 x), x < 0 where k 1 = 2 π‘š βˆ— E 1 /ℏ On the right, we have only a transmitted wave, ψ(x) = texp(i k 2 x), x > 0 where k 2 = 2 π‘š βˆ— E 2 /ℏ Boundary conditions at x = 0, 1 + r = t ψ(x) and ψ(x)/dx must be continuous. k 1 (1 – r) = t k 2 Solving for r and t, r = k 1 βˆ’ k 2 k 1 + k 2 t = 2k 1 k 1 + k 2 From the current density equation, 𝐽 ( r , t) = βˆ’π‘–π‘žβ„ 2 π‘š βˆ— < (𝛻Ψ) βˆ— Ξ¨ - Ξ¨βˆ—(𝛻Ψ)Ξ¨ > J(x < 0)= - 𝐢 2 π‘žβ„ π‘˜ 1 π‘š βˆ— 1 βˆ’ π‘Ÿ 2 = J 𝑖 βˆ’ J π‘Ÿ J(x > 0)= - 𝐢 2 π‘žβ„ π‘˜ 2 π‘š βˆ— 𝑑 2 = J 𝑑 R≑ J r / J 𝑖 = r 2 J π‘Ÿ =R J 𝑖 T≑ J 𝑑 /J 𝑖 = t 2 π‘˜ 2 π‘˜ 1 J 𝑑 =T J 𝑖 T is function of function of electron energy. R +T = 1

24 r’ = k 2 βˆ’ k 1 k 1 + k 2 t’ = 2k 2 k 1 + k 2 Rβ€² = rβ€² 2 = R R +T = 1
For the reverse problem, an incident wave from the right and a transmitted to the left The coefficients, r’ = k 2 βˆ’ k 1 k 1 + k 2 t’ = 2k 2 k 1 + k 2 π‘˜ 1 and π‘˜ 2 interchanged The corresponding reflection and transmission coefficients, Rβ€² = rβ€² 2 = R R +T = 1 Tβ€² = tβ€² 2 π‘˜ 1 π‘˜ 2 = T The results derived above are often written compactly in the form of a scattering matrix. For a fixed energy E, we have a forward wave ψ 𝑓 (x) and a reverse wave ψ π‘Ÿ (x) at any point. ψ(x) = ψ 𝑓 (x) + ψ π‘Ÿ (x) If a wave is incident only from the left,

25 k = π‘›πœ‹ π‘Ž , Particle in a 1-D Box ∴ Οˆπ‘› π‘₯ = 𝐴 𝑛 𝑠𝑖𝑛 π‘›πœ‹π‘₯ π‘Ž
i) Outside the box, U = ∞, ψ π‘₯ =0 ii) Inside the box, U = 0. 𝑑 2 ψ 𝑑 π‘₯ 2 +βˆ’ 2π‘š ℏ2 (πΈβˆ’π‘ˆ)ψ=0 𝑑 2 ψ 𝑑 π‘₯ 2 + π‘˜ 2 ψ=0 0 < x < a where k ≑ 2π‘šπΈ/ ℏ 2 or E= ℏ 2 π‘˜ 2 2π‘š Solution becomes ψ 0 =0 or ψ π‘₯ =𝐴 𝑒 π‘–π‘˜π‘₯ + 𝐡 𝑒 βˆ’π‘–π‘˜π‘₯ Boundary conditions ψ π‘₯ =π΄π‘ π‘–π‘›π‘˜π‘₯ + π΅π‘π‘œπ‘ π‘˜π‘₯ ψ π‘Ž =0 k = π‘›πœ‹ π‘Ž , ψ 0 =𝐡=0, ψ π‘Ž =π΄π‘ π‘–π‘›π‘˜π‘Ž=0 ∴ n = Β±1,Β±2, Β±3,……. Two waves with +, - direction form standing wave. Οˆπ‘› π‘₯ = 𝐴 𝑛 𝑠𝑖𝑛 π‘›πœ‹π‘₯ π‘Ž Particle was restricted to a finite range of coordinate value.

26 E= ℏ 2 π‘˜ 2 2π‘š En= 𝑛 2 ℏ 2 πœ‹ 2 2π‘š π‘Ž 2 discrete energy spectrum
standing wave Particle’s momentum is zero for all energy states, since the particle periodically changes direction. < 𝑝 π‘₯ > = βˆ’βˆž ∞ Οˆβˆ— ℏ 𝑖 𝑑 𝑑π‘₯ ψ dx =0

27 Οˆβˆ— ψ= ψ 2 is called spatial density (probability density when it is normalized). ψ 2 Οˆβˆ— Οˆπ‘‘π‘₯= ψ 2 𝑑π‘₯: probability of finding the particle between x and x + dx x0 x βˆ’π‘žΟˆβˆ— ψ=βˆ’π‘ž ψ 2 : spatial distribution of charge corresponding to a single electron The electron is no longer considered to be identifiable as a point with particular position, the whole density distribution is the β€œparticle”. From normalization, βˆ’βˆž ∞ Οˆβˆ—Οˆdx = 0 π‘Ž Οˆβˆ—Οˆdx = 0 π‘Ž 𝐴 𝑛 2 𝑠𝑖𝑛2 π‘›πœ‹π‘₯ π‘Ž dx = 1 ∴ 𝐴 𝑛 = ( 2 π‘Ž )1/2 βˆ’βˆž ∞ βˆ’π‘žΟˆβˆ—Οˆdx =βˆ’π‘ž 0 π‘Ž Οˆβˆ—Οˆdx =βˆ’π‘ž

28 Finite Potential Well U(x) U0 U(x) = 0, 0 <x < a
𝑑 2 ψ 𝑑 π‘₯ 2 +βˆ’ 2π‘š ℏ2 (πΈβˆ’π‘ˆ)ψ=0, U(x) = U0, otherwise x a For 0 < x < a, U = 0, 𝑑 2 ψ0 𝑑 π‘₯ 2 + π‘˜ 2 ψ0=0 where k ≑ 2π‘šπΈ/ ℏ 2 𝑑 2 ψ Β± 𝑑 π‘₯ 2 + 𝛼 2 ψ Β± =0 For x > a, x < 0, U = U0, where α≑ 2π‘š(π‘ˆ0 βˆ’πΈ)/ ℏ (0 < E < U0) The general solutions, Οˆβˆ’ βˆ’βˆž =0 𝐡-, A+ = 0 ψ+ ∞ =0 Οˆβˆ’ π‘₯ =π΄βˆ’ 𝑒 𝛼π‘₯ + 𝐡 βˆ’π‘’ βˆ’π›Όπ‘₯ …x < 0 Οˆβˆ’ 0 =ψ0 0 ψ0 π‘₯ =𝐴0π‘ π‘–π‘›π‘˜π‘₯ + 𝐡0π‘π‘œπ‘ π‘˜π‘₯ …0 <x < a continuity of ψ B.C’s ψ0 π‘Ž =ψ+ π‘Ž ψ+ π‘₯ =𝐴+ 𝑒 𝛼π‘₯ + 𝐡 +𝑒 βˆ’π›Όπ‘₯ …x > a π‘‘Οˆβˆ’(0) 𝑑π‘₯ = π‘‘Οˆ0(0) 𝑑π‘₯ continuity of π‘‘Οˆ 𝑑π‘₯ π‘‘Οˆ0(π‘Ž) 𝑑π‘₯ = π‘‘Οˆ+(π‘Ž) 𝑑π‘₯ Four equations four unknowns

29 𝐴0π‘ π‘–π‘›π‘˜π‘Ž + 𝐡0π‘π‘œπ‘ π‘˜π‘Ž=𝐡 +𝑒 βˆ’π›Όπ‘Ž 𝐴0 π‘˜ 2 βˆ’ 𝛼 2 π‘ π‘–π‘›π‘˜π‘Ž βˆ’2π›Όπ‘˜π‘π‘œπ‘ π‘˜π‘Ž =0 π›Όπ΄βˆ’= π‘˜π΄0
π΄βˆ’ = 𝐡0 𝐴0π‘ π‘–π‘›π‘˜π‘Ž + 𝐡0π‘π‘œπ‘ π‘˜π‘Ž=𝐡 +𝑒 βˆ’π›Όπ‘Ž 𝐴0 π‘˜ 2 βˆ’ 𝛼 2 π‘ π‘–π‘›π‘˜π‘Ž βˆ’2π›Όπ‘˜π‘π‘œπ‘ π‘˜π‘Ž =0 π›Όπ΄βˆ’= π‘˜π΄0 𝐴0 = 0; trivial solution π‘˜π΄0π‘π‘œπ‘ π‘˜π‘Ž βˆ’ π‘˜π΅0π‘ π‘–π‘›π‘˜π‘Ž=βˆ’ 𝛼𝐡 +𝑒 βˆ’π›Όπ‘Ž Non-trivial solution, π‘˜ 2 βˆ’ 𝛼 2 π‘ π‘–π‘›π‘˜π‘Ž βˆ’2π›Όπ‘˜π‘π‘œπ‘ π‘˜π‘Ž=0 or π‘‘π‘Žπ‘›π‘˜π‘Ž = 2π›Όπ‘˜ π‘˜ 2 βˆ’ 𝛼 2 Introducing, Ξ±0≑ 2π‘šπ‘ˆ0 /ℏ2 (Ξ±0 =constant) and ξ≑ 𝐸/π‘ˆ ( 0 <ΞΎ < 1) Then, Ξ±=Ξ±0 1 βˆ’ΞΎ and π‘˜=Ξ±0 ΞΎ and therefore π‘‘π‘Žπ‘›β‘(Ξ±0π‘Ž ΞΎ )= 2 ΞΎ(1 βˆ’ΞΎ) 2ΞΎ βˆ’1 = 𝑓(ΞΎ) Ξ±0π‘Ž= πœ‹ 4 assuming ΞΎ = 0.87 𝐸=0.87π‘ˆ0

30 there is one and only one allowed energy level.
Ξ±0π‘Ž< πœ‹ π‘œπ‘Ÿ π‘ˆ0< ℏ 2 πœ‹ 2 2π‘š π‘Ž 2 , For very shallow wells, there is one and only one allowed energy level. When πœ‹< Ξ±0π‘Ž<2πœ‹, there is two allowed energy levels. When 2πœ‹< Ξ±0π‘Ž<3πœ‹, there is three allowed energy levels. Visualization of quantum mechanical reflection finite well e-1 a infinite well penetration depth Visualization of tunneling through a thin barrier


Download ppt "Elements of Quantum Mechanics"

Similar presentations


Ads by Google