Presentation is loading. Please wait.

Presentation is loading. Please wait.

CompHEP Automatic Computations from Lagrangians to Events

Similar presentations


Presentation on theme: "CompHEP Automatic Computations from Lagrangians to Events"— Presentation transcript:

1 CompHEP Automatic Computations from Lagrangians to Events
Urýchľovačová fyzika 3 CompHEP Automatic Computations from Lagrangians to Events Ivan Melo

2 CompHEP A good tool for learning particle physics
A good tool for research

3 Cross section calculation
3 4 5 1 2 7 6 8 amplitúda počet možných stavov, fázový priestor zachovanie energie a hybnosti

4 + ... + e- e+  e- e+ Dynamika procesu je skrytá v amplitúde M
g e- e+ + + ... M = M1(α) M2(α2) ak  < 1 potom M1(α) > M2(α2) > ... v prípade elektrónov a fotónov:  = 1/137 Urýchľovačová fyzika 5 M.Gintner

5 Great simulation chain
CompHEP, GRACE, MadGraph,AlpGen, O’Mega, WHIZARD, Amegic, … PYTHIA, HERWIG Theory Experiment ATLFAST Root ATLAS

6 Useful features of CompHEP
Tool for calculating cross-sections and widths at tree-level starting from Lagrangian Event generation plus CompHEP – PYTHIA and CompHEP – HERWIG interface Up to 7 particles in final state Built-in models: QED, effective 4-fermion, SM, MSSM, SUGRA, GMSB With LanHEP one can add his/her own model Simplicity LEP particles LEP LHC, ILC ,6,8

7 CompHEP limitations No loop diagrams
Computation of squared amplitudes time- consuming for large number of FD No polarized (helicity) cross-sections No hadronization of quarks and gluons

8 CompHEP Collaboration
E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Edneral, V. Ilyin, A. Kryuokov, V. Savrin, A. Semenov, A. Sherstnev Lomonosov Moscow State University CompHEP home page:

9 Beyond the SM with CompHEP
CompHEP Collaboration

10 Beyond the SM with CompHEP the list of topics based on ~ 1000 theory papers quoting CompHEP
CompHEP Collaboration

11 Published experimental analyses quoting CompHEP
CompHEP Collaboration

12 Learning particle physics with CompHEP
γ + e γ + e- (QED) e+ + e μ+μ- (SM scattering, e+e- collider) H * x (SM decay) pp ttH +X tt bb + X (pp collider)

13 γ + e- γ + e- (Compton scattering)
Thomson (α=1/137) Klein-Nishina limit x << 1 (nonrelat.) Thomson scattering x >> 1 (relat.) Klein-Nishina limit

14 e+ + e μ+μ- σCompHEP= nb σLEP= nb

15 Higgs decay, H 2*x decay width lifetime

16 pp ttH +X tt bb + X Proton structure functions fi(x,q2) u u p d t g b

17

18 pp ttH +X tt bb + X Signal gg ttH σ = 0.729 pb uu ttH σ = 0.075 pb
dd ttH σ = pb Background gg ttgg σ = 400 pb gg ttbb σ = 6 pb

19 Research with CompHEP Add your own model with OneHEP
Send events to PYTHIA or HERWIG

20 Future developments Loops Polarized cross-sections
Grid and new algorithm


Download ppt "CompHEP Automatic Computations from Lagrangians to Events"

Similar presentations


Ads by Google