Download presentation
Presentation is loading. Please wait.
1
S as an energy relationship
The relationship between a supersaturated (or subsaturated) system and a system at equilibrium
2
Energy released when NaCl (S=1.5) precipitates @25C/1atm
This energy release drives the precipitation reaction forward SNaCl=1.5 โ91,588.4 ๐๐๐ Energy in solution 243.4 cal released when NaCl precipitates SNaCl=1.0 โ91,831.8 ๐๐๐ Concentration Energy released when NaCl (S=1.5)
3
Saturation Ratio and Energy
There is a difference however with respect to amount of solids forming Solids, umol/kg S=1 S=2 S=10 S=100 Calcite 48.2 274.8 1,620 Barite 4.4 23.5 101.6 Saturation Ratio and Energy
4
The reason energy is the same for a given S
๐พ ๐ ๐ ๐๐๐ถ๐, โ๐๐๐๐ก๐ = ๐ฆ ๐๐ + โ ๐ ๐๐ + โ ๐พ ๐ถ๐ โ โ ๐ ๐ถ๐ โ ๐ ๐๐๐ถ๐ (๐ ) ๐บ= ๐ฐ๐จ๐ท ๐ฒ ๐๐ = ๐ โ โ๐ฎ ๐๐ ๐๐๐๐๐๐๐๐ ๐น๐ป ๐ โ โ๐ฎ๐น ๐๐ ๐๐๐๐๐๐๐๐๐๐๐ ๐น๐ป โ๐ฎ ๐๐ ๐๐๐๐๐๐๐๐ = โ๐บ ๐๐๐๐๐๐ก๐๐๐ ๐๐ ๐
๐๐๐๐ก๐๐๐ก๐ ๐๐ก ๐ ๐ข๐๐๐๐ ๐๐ก๐ข๐๐๐ก๐๐๐ โ๐ฎ๐น ๐๐ ๐๐๐๐๐๐๐๐๐๐๐ = โ๐บ ๐๐๐๐๐๐ก๐๐๐ ๐๐๐๐๐๐๐ข๐๐ก๐ ๐๐ก ๐๐๐ข๐๐๐๐๐๐๐ข๐ โ โ๐บ ๐๐๐๐๐๐ก๐๐๐ ๐๐ ๐
๐๐๐๐ก๐๐๐ก๐ ๐๐ก ๐๐๐ข๐๐๐๐๐๐๐ข๐ The reason energy is the same for a given S
5
Saturation Ratio and Scale Mass
There is a relationship between the energy released and the saturation ratio ๏GS=x -๏GS=1 S=1 S=2 S=10 S=100 Calcite 407 1,361 2,707 Barite 408 1,362 2,724 Saturation Ratio and Scale Mass
6
Relationship of S to scale formation
S>1, supersaturated S<1, subsaturated Relationship of S to scale formation
7
Three Elements to Developing Scale Risk
Thermodynamic โSaturation Ratioโ or โScale Tendencyโ โExcess Soluteโ or โScale Massโ Kinetic Nucleation induction time Crystal Growth rates Mass Transfer Transport to surface Surface Adhesion Three Elements to Developing Scale Risk
8
NaCl-H2O phase balance ๐๐๐ถ๐,๐ป๐๐๐๐ก๐ โ ๐๐ + + ๐ถ๐ โ
the rate expression for dissolving or precipitating NaCl is: ๐๐๐ก๐= ๐ ๐๐ + ๐๐ก = ๐ ๐ถ๐ โ ๐๐ก =โ ๐ ๐ป๐๐๐๐ก๐ ๐๐ก NaCl-H2O phase balance
9
๐ ๐๐ + ๐๐ก = ๐ ๐ถ๐ โ ๐๐ก =โ ๐ ๐ป๐๐๐๐ก๐ ๐๐ก <0 :๐๐๐ถ๐ ๐๐ ๐๐๐๐๐๐๐๐ก๐๐ก๐๐๐
water is Supersaturated with NaCl ๐๐ก ๐ ๐๐ + concentration at equilibrium ๐ ๐๐ + ๐๐ก = ๐ ๐ถ๐ โ ๐๐ก =โ ๐ ๐ป๐๐๐๐ก๐ ๐๐ก =0 water is Subsaturated with NaCl ๐๐ก ๐ ๐๐ + ๐๐ก = ๐ ๐ถ๐ โ ๐๐ก =โ ๐ ๐ป๐๐๐๐ก๐ ๐๐ก >0 :๐๐๐ถ๐ ๐๐ ๐๐๐ ๐ ๐๐๐ฃ๐๐๐ t=๏ฅ Plotted on a time curve
10
Three parts of the curve
@t๏น0, rate๏น๏น0 @t=0, rate=0 @t=๏ฅ, rate=0 Scale Tendency value Excess Solute value Supersaturated Equilibrium Subsaturated t=๏ฅ Two boundaries and one curve At t=0, rate=0 (by definition) โ we obtain the Scale tendency At t=๏ฅ, rate=0 (equilibrium) โ we obtain the Excess Solute Between t=0 and ๏ฅ, rate๏น0 (reaction occurs) โ nothing obtained Three parts of the curve
11
How is Ksp calculated? ๐พ ๐ ๐ = ๐ โ โ๐บ ๐
๐๐๐๐ก๐๐๐ ๐
๐
The fundamental equation for Ksp ๐พ ๐ ๐ = ๐ โ โ๐บ ๐
๐๐๐๐ก๐๐๐ ๐
๐ Definition: The Solubility Product constant of a solid that is in equilibrium with its corresponding dissolved species in water It is derived from the thermodynamics properties of the solid and of the dissolved ions โ๐บ ๐
๐๐๐๐ก๐๐๐ = โ๐บ ๐๐๐๐๐๐ก๐๐๐ ๐๐๐๐๐๐๐ข๐๐ก๐ - โ๐บ ๐๐๐๐๐๐ก๐๐๐ ๐๐ ๐
๐๐๐๐ก๐๐๐ก๐ For NaCl (halite): ๐๐๐ถ๐ = ๐๐ + + ๐ถ๐ โ โ๐บ ๐
,๐๐๐ถ๐ = โ๐บ ๐,๐๐ + + โ๐บ ๐,๐ถ๐ โ - โ๐บ ๐,๐๐๐ถ๐,(๐ป๐๐๐๐ก๐) How is Ksp calculated?
12
Thermodynamic K ๐พ ๐๐ฅ๐ = ๐ โ โ๐บ (๐,๐) ๐
๐๐๐๐ก๐๐๐ ๐
๐
The fundamental equation ๐พ ๐๐ฅ๐ = ๐ โ โ๐บ (๐,๐) ๐
๐๐๐๐ก๐๐๐ ๐
๐ when used with a rigorous Equation of State, is accurate to 300C and 1500atm โ๐บ (๐,๐) ๐
๐๐๐๐ก๐๐๐ =๐(๐ป, ๐, ๐ถ ๐ , ๐ ๐ ) Log K for HCO3-1 Thermodynamic K
13
A simplified equation for Ksp
An simplified thermodynamic equation that is useful to ~350K (75C) and 1atm. This is called the Vanโt Hoff equation. ln ๐พ ๐๐ฅ๐, ๐ ๐พ ๐๐ฅ๐,298 = โโ ๐ป ๐ ๐
1 ๐ 2 โ 1 298 A simplified equation for Ksp
14
Curve fitting equation used when solubility data is available
๐๐๐๐พ=๐+ ๐ ๐ +๐โ๐+๐โ ๐ 2 +๐โ๐+๐ ๐ 2 Useful tool and effective within the experimental region Empirical Ksp
15
Temperature effects on ๏ง and Ksp
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.