Download presentation
Presentation is loading. Please wait.
Published byLaura Dennis Modified over 6 years ago
1
Reliable Deniable Communication: Hiding Messages in Noise
Pak Hou Che Mayank Bakshi Sidharth Jaggi The Chinese University of Hong Kong The Institute of Network Coding
2
Alice Bob Reliability
3
Alice Bob Reliability Deniability Willie (the Warden)
4
Aliceβs Encoder M πΌπ π=0, π = π πΌπ π=1, π =πΈππ(π) π T πππ π πππ πβ{1, β¦, π} tππππ . π π‘ππ‘π’π πβ{0, 1} π= 2 π( π ) πβπππ’πβππ’π‘ π= log π π
ππππ‘ππ£π π‘βπππ’πβππ’π‘ π= log π π
5
Aliceβs Encoder M πΌπ π=0, π = π πΌπ π=1, π =πΈππ(π) Bobβs Decoder π π π BSC(pb) π =π·ππ( π π ) π T 1βπ ππππππππ Pr π =π >1βπ Message πβ{1, β¦, π} Trans. Status πβ{0, 1} π= 2 π( π )
6
Aliceβs Encoder M πΌπ π=0, π = π πΌπ π=1, π =πΈππ(π) Bobβs Decoder π π π BSC(pb) π =π·ππ( π π ) π T 1βπ ππππππππ Pr π =π >1βπ Message πβ{1, β¦, π} Trans. Status πβ{0, 1} π= 2 π( π ) BSC(pw) π π€ π =π·ππ( π π€ ) Willieβs (Best) Estimator π
7
Bash, Goeckel & Towsley [1]
Shared secret π( π log π ) bits AWGN channels But capacity only π π bits [1] B. A. Bash, D. Goeckel and D. Towsley, βSquare root law for communication with low probability of detection on AWGN channels,β in Proceedings of the IEEE International Symposium on Information Theory (ISIT), 2012, pp. 448β452.
8
This work No shared secret BSC(pb) pb < pw BSC(pw)
9
Aliceβs Encoder M πΌπ π=0, π = π πΌπ π=1, π =πΈππ(π) Bobβs Decoder π π π BSC(pb) π =π·ππ( π π ) π T 1βπ ππππππππ Pr π =π >1βπ Message πβ{1, β¦, π} Trans. Status πβ{0, 1} π= 2 π( π ) BSC(pw) π π€ π =π·ππ( π π€ ) Willieβs (Best) Estimator π
10
Aliceβs Transmission Status
Hypothesis Testing Willieβs Estimate Aliceβs Transmission Status πΌ=Pr π =1 π=0 , π½=Pr π =0 π=1
11
Aliceβs Transmission Status
Hypothesis Testing Willieβs Estimate Aliceβs Transmission Status
12
Aliceβs Transmission Status
Hypothesis Testing Willieβs Estimate Aliceβs Transmission Status
13
Aliceβs Transmission Status
Hypothesis Testing Willieβs Estimate Aliceβs Transmission Status
14
Intuition π=0, π² π€ = π³ π€ ~Binomial(π, π π€ )
15
Intuition π=0, π² π€ = π³ π€ ~Binomial π, π π€ πβππ π=1,
16
Theorem 1 (Wt(c.w.)) (high deniability => low weight codewords)
Too many codewords with weight βmuchβ greater than π π , then the system is βnot veryβ deniable
17
Theorems 2 & 3 (Converse & achievability for reliable & deniable comm
18
Theorems 2 & 3 π π€ 1/2 pb>pw π π 1/2
19
Theorems 2 & 3 π π€ 1/2 π=0 π π 1/2
20
Theorems 2 & 3 π π€ pw=1/2 1/2 π π 1/2
21
Theorems 2 & 3 π π€ 1/2 (BSC(pb)) π π 1/2
22
Theorems 2 & 3 π π€ 1/2 pb=0 π π 1/2
23
Theorems 2 & 3 π π€ π = 2 π( π log π ) , π π = 2 π( π log π ) 1/2 π π
π π 1/2
24
Theorems 2 & 3 π π€ 1/2 pw>pb π π 1/2
25
Theorems 2 & 3 π π€ π = 2 π( π ) 1/2 βStandardβ IT inequalities +
π = 2 π( π ) 1/2 βStandardβ IT inequalities + Wt(βmost codewordsβ)<βn (Thm 1) π π 1/2
26
Theorems 2 & 3 Main thm: π π€ 1/2 Achievable region π = 2 Ξ© ( π ) π π
π = 2 Ξ© ( π ) π π 1/2
27
log π π/2 βπ logarithm of # codewords n π€ π‘ π» ( π π€ )
28
log(# codewords) ππ»( π π€ ) π± = 0 Pr π π€ β‘(π€ π‘ π» π² π€ ) π( 1 π ) π π€ π π π€ π+π( π ) n π€ π‘ π» ( π² π€ ) π π€ πβπ( π )
29
log(# codewords) ππ»( π π€ βπ) π π Pr π, π π€ β‘(π€ π‘ π» π² π€ ) π( 1 π ) n π€ π‘ π» ( π² π€ ) (π π€ βπ)πβπ( π ) (π π€ βπ)π (π π€ βπ)π+π( π )
31
Theorem 3 β Reliability proof sketch
Weight π( π ) Random code . 2 π( π ) codewords
32
Theorem 3 β Reliability proof sketch
Weight π( π ) E(Intersection of 2 codewords) = O(1) βMostβ codewords βwell-isolatedβ .
33
Theorem 3 β dmin decoding
x + π( π ) xβ Pr(x decoded to xβ) < 2 βπ( π )
34
Theorem 3 β Deniability proof sketch
Recall: want to show π π 0 , π 1 <π
35
log(# codewords) ππ»( π π€ βπ) π π Pr π, π π€ β‘(π€ π‘ π» π² π€ ) π( 1 π ) n π€ π‘ π» ( π² π€ ) (π π€ βπ)πβπ( π ) (π π€ βπ)π (π π€ βπ)π+π( π )
36
Theorem 3 β Deniability proof sketch
Recall: want to show π π 0 , π 1 <π π 0 π 1
37
Theorem 3 β Deniability proof sketch
log(# codewords) n Pr πͺ, π π€ β‘(π€ π‘ π» π² π€ ) π( 1 π ) π€ π‘ π» ( π² π€ ) (π π€ βπ)πβπ( π ) (π π€ βπ)π (π π€ βπ)π+π( π )
38
Theorem 3 β Deniability proof sketch
logarithm of # codewords n π€ π‘ π» ( π π€ )
39
Theorem 3 β Deniability proof sketch
π¬ πͺ (π 1 )!!! π 0 π 1
40
Theorem 3 β Deniability proof sketch
π π 0 , π 1 β€π π 0 , π¬ πͺ (π 1 ) +π π¬ πͺ (π 1 ), π 1 π¬ πͺ (π 1 )!!! π 0 π 1
41
Theorem 3 β Deniability proof sketch
π¬ πͺ (π 1 ) π 1
43
Theorem 3 β Deniability proof sketch
logarithm of # codewords π π€ π π π€ π+π( π ) n π€ π‘ π» ( π π€ ) π π€ πβπ( π )
44
Theorem 4 logarithm of # codewords n π€ π‘ π» ( π π€ )
45
Theorem 4 Too few codewords => Not deniable logarithm of
n π€ π‘ π» ( π π€ )
46
Summary
47
Summary
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.