Presentation is loading. Please wait.

Presentation is loading. Please wait.

Reliable Deniable Communication: Hiding Messages in Noise

Similar presentations


Presentation on theme: "Reliable Deniable Communication: Hiding Messages in Noise"β€” Presentation transcript:

1 Reliable Deniable Communication: Hiding Messages in Noise
Pak Hou Che Mayank Bakshi Sidharth Jaggi The Chinese University of Hong Kong The Institute of Network Coding

2 Alice Bob Reliability

3 Alice Bob Reliability Deniability Willie (the Warden)

4 Alice’s Encoder M 𝐼𝑓 𝐓=0, 𝐗 = 𝟎 𝐼𝑓 𝐓=1, 𝐗 =𝐸𝑛𝑐(𝐌) 𝐗 T π‘šπ‘’π‘ π‘ π‘Žπ‘”π‘’ 𝐌∈{1, …, 𝑁} tπ‘Ÿπ‘Žπ‘›π‘ . π‘ π‘‘π‘Žπ‘‘π‘’π‘  π“βˆˆ{0, 1} 𝑁= 2 πœƒ( 𝑛 ) π‘‡β„Žπ‘Ÿπ‘œπ‘’π‘”β„Žπ‘π‘’π‘‘ 𝜏= log 𝑁 π‘…π‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Žπ‘π‘’π‘‘ π‘Ÿ= log 𝑁 𝑛

5 Alice’s Encoder M 𝐼𝑓 𝐓=0, 𝐗 = 𝟎 𝐼𝑓 𝐓=1, 𝐗 =𝐸𝑛𝑐(𝐌) Bob’s Decoder 𝐗 𝐘 𝑏 BSC(pb) 𝐌 =𝐷𝑒𝑐( 𝐘 𝑏 ) 𝐌 T 1βˆ’πœ– π‘Ÿπ‘’π‘™π‘–π‘Žπ‘π‘™π‘’ Pr 𝐌 =𝐌 >1βˆ’πœ– Message 𝐌∈{1, …, 𝑁} Trans. Status π“βˆˆ{0, 1} 𝑁= 2 πœƒ( 𝑛 )

6 Alice’s Encoder M 𝐼𝑓 𝐓=0, 𝐗 = 𝟎 𝐼𝑓 𝐓=1, 𝐗 =𝐸𝑛𝑐(𝐌) Bob’s Decoder 𝐗 𝐘 𝑏 BSC(pb) 𝐌 =𝐷𝑒𝑐( 𝐘 𝑏 ) 𝐌 T 1βˆ’πœ– π‘Ÿπ‘’π‘™π‘–π‘Žπ‘π‘™π‘’ Pr 𝐌 =𝐌 >1βˆ’πœ– Message 𝐌∈{1, …, 𝑁} Trans. Status π“βˆˆ{0, 1} 𝑁= 2 πœƒ( 𝑛 ) BSC(pw) 𝐘 𝑀 𝐓 =𝐷𝑒𝑐( 𝐘 𝑀 ) Willie’s (Best) Estimator 𝐓

7 Bash, Goeckel & Towsley [1]
Shared secret 𝑂( 𝑛 log 𝑛 ) bits AWGN channels But capacity only 𝑂 𝑛 bits [1] B. A. Bash, D. Goeckel and D. Towsley, β€œSquare root law for communication with low probability of detection on AWGN channels,” in Proceedings of the IEEE International Symposium on Information Theory (ISIT), 2012, pp. 448–452.

8 This work No shared secret BSC(pb) pb < pw BSC(pw)

9 Alice’s Encoder M 𝐼𝑓 𝐓=0, 𝐗 = 𝟎 𝐼𝑓 𝐓=1, 𝐗 =𝐸𝑛𝑐(𝐌) Bob’s Decoder 𝐗 𝐘 𝑏 BSC(pb) 𝐌 =𝐷𝑒𝑐( 𝐘 𝑏 ) 𝐌 T 1βˆ’πœ– π‘Ÿπ‘’π‘™π‘–π‘Žπ‘π‘™π‘’ Pr 𝐌 =𝐌 >1βˆ’πœ– Message 𝐌∈{1, …, 𝑁} Trans. Status π“βˆˆ{0, 1} 𝑁= 2 πœƒ( 𝑛 ) BSC(pw) 𝐘 𝑀 𝐓 =𝐷𝑒𝑐( 𝐘 𝑀 ) Willie’s (Best) Estimator 𝐓

10 Alice’s Transmission Status
Hypothesis Testing Willie’s Estimate Alice’s Transmission Status 𝛼=Pr 𝐓 =1 𝐓=0 , 𝛽=Pr 𝐓 =0 𝐓=1

11 Alice’s Transmission Status
Hypothesis Testing Willie’s Estimate Alice’s Transmission Status

12 Alice’s Transmission Status
Hypothesis Testing Willie’s Estimate Alice’s Transmission Status

13 Alice’s Transmission Status
Hypothesis Testing Willie’s Estimate Alice’s Transmission Status

14 Intuition 𝐓=0, 𝐲 𝑀 = 𝐳 𝑀 ~Binomial(𝑛, 𝑝 𝑀 )

15 Intuition 𝐓=0, 𝐲 𝑀 = 𝐳 𝑀 ~Binomial 𝑛, 𝑝 𝑀 π‘Šβ„Žπ‘’π‘› 𝐓=1,

16 Theorem 1 (Wt(c.w.)) (high deniability => low weight codewords)
Too many codewords with weight β€œmuch” greater than 𝑐 𝑛 , then the system is β€œnot very” deniable

17 Theorems 2 & 3 (Converse & achievability for reliable & deniable comm

18 Theorems 2 & 3 𝑝 𝑀 1/2 pb>pw 𝑝 𝑏 1/2

19 Theorems 2 & 3 𝑝 𝑀 1/2 𝑁=0 𝑝 𝑏 1/2

20 Theorems 2 & 3 𝑝 𝑀 pw=1/2 1/2 𝑝 𝑏 1/2

21 Theorems 2 & 3 𝑝 𝑀 1/2 (BSC(pb)) 𝑝 𝑏 1/2

22 Theorems 2 & 3 𝑝 𝑀 1/2 pb=0 𝑝 𝑏 1/2

23 Theorems 2 & 3 𝑝 𝑀 𝑁 = 2 𝑂( 𝑛 log 𝑛 ) , 𝑛 𝑛 = 2 𝑂( 𝑛 log 𝑛 ) 1/2 𝑝 𝑏
𝑝 𝑏 1/2

24 Theorems 2 & 3 𝑝 𝑀 1/2 pw>pb 𝑝 𝑏 1/2

25 Theorems 2 & 3 𝑝 𝑀 𝑁 = 2 𝑂( 𝑛 ) 1/2 β€œStandard” IT inequalities +
𝑁 = 2 𝑂( 𝑛 ) 1/2 β€œStandard” IT inequalities + Wt(β€œmost codewords”)<√n (Thm 1) 𝑝 𝑏 1/2

26 Theorems 2 & 3 Main thm: 𝑝 𝑀 1/2 Achievable region 𝑁 = 2 Ξ© ( 𝑛 ) 𝑝 𝑏
𝑁 = 2 Ξ© ( 𝑛 ) 𝑝 𝑏 1/2

27 log 𝑛 𝑛/2 β‰ˆπ‘› logarithm of # codewords n 𝑀 𝑑 𝐻 ( π’š 𝑀 )

28 log(# codewords) 𝑛𝐻( 𝑝 𝑀 ) 𝐱 = 0 Pr 𝐙 𝑀 ⁑(𝑀 𝑑 𝐻 𝐲 𝑀 ) 𝑂( 1 𝑛 ) 𝑝 𝑀 𝑛 𝑝 𝑀 𝑛+𝑂( 𝑛 ) n 𝑀 𝑑 𝐻 ( 𝐲 𝑀 ) 𝑝 𝑀 π‘›βˆ’π‘‚( 𝑛 )

29 log(# codewords) 𝑛𝐻( 𝑝 𝑀 βˆ—πœŒ) 𝑐 𝑛 Pr 𝐌, 𝐙 𝑀 ⁑(𝑀 𝑑 𝐻 𝐲 𝑀 ) 𝑂( 1 𝑛 ) n 𝑀 𝑑 𝐻 ( 𝐲 𝑀 ) (𝑝 𝑀 βˆ—πœŒ)π‘›βˆ’π‘‚( 𝑛 ) (𝑝 𝑀 βˆ—πœŒ)𝑛 (𝑝 𝑀 βˆ—πœŒ)𝑛+𝑂( 𝑛 )

30

31 Theorem 3 – Reliability proof sketch
Weight 𝑂( 𝑛 ) Random code . 2 𝑂( 𝑛 ) codewords

32 Theorem 3 – Reliability proof sketch
Weight 𝑂( 𝑛 ) E(Intersection of 2 codewords) = O(1) β€œMost” codewords β€œwell-isolated” .

33 Theorem 3 – dmin decoding
x + 𝑂( 𝑛 ) x’ Pr(x decoded to x’) < 2 βˆ’π‘‚( 𝑛 )

34 Theorem 3 – Deniability proof sketch
Recall: want to show 𝑉 𝐏 0 , 𝐏 1 <πœ–

35 log(# codewords) 𝑛𝐻( 𝑝 𝑀 βˆ—πœŒ) 𝑐 𝑛 Pr 𝐌, 𝐙 𝑀 ⁑(𝑀 𝑑 𝐻 𝐲 𝑀 ) 𝑂( 1 𝑛 ) n 𝑀 𝑑 𝐻 ( 𝐲 𝑀 ) (𝑝 𝑀 βˆ—πœŒ)π‘›βˆ’π‘‚( 𝑛 ) (𝑝 𝑀 βˆ—πœŒ)𝑛 (𝑝 𝑀 βˆ—πœŒ)𝑛+𝑂( 𝑛 )

36 Theorem 3 – Deniability proof sketch
Recall: want to show 𝑉 𝐏 0 , 𝐏 1 <πœ– 𝐏 0 𝐏 1

37 Theorem 3 – Deniability proof sketch
log(# codewords) n Pr π‘ͺ, 𝐙 𝑀 ⁑(𝑀 𝑑 𝐻 𝐲 𝑀 ) 𝑂( 1 𝑛 ) 𝑀 𝑑 𝐻 ( 𝐲 𝑀 ) (𝑝 𝑀 βˆ—πœŒ)π‘›βˆ’π‘‚( 𝑛 ) (𝑝 𝑀 βˆ—πœŒ)𝑛 (𝑝 𝑀 βˆ—πœŒ)𝑛+𝑂( 𝑛 )

38 Theorem 3 – Deniability proof sketch
logarithm of # codewords n 𝑀 𝑑 𝐻 ( π’š 𝑀 )

39 Theorem 3 – Deniability proof sketch
𝑬 π‘ͺ (𝐏 1 )!!! 𝐏 0 𝐏 1

40 Theorem 3 – Deniability proof sketch
𝑉 𝐏 0 , 𝐏 1 ≀𝑉 𝐏 0 , 𝑬 π‘ͺ (𝐏 1 ) +𝑉 𝑬 π‘ͺ (𝐏 1 ), 𝐏 1 𝑬 π‘ͺ (𝐏 1 )!!! 𝐏 0 𝐏 1

41 Theorem 3 – Deniability proof sketch
𝑬 π‘ͺ (𝐏 1 ) 𝐏 1

42

43 Theorem 3 – Deniability proof sketch
logarithm of # codewords 𝑝 𝑀 𝑛 𝑝 𝑀 𝑛+𝑂( 𝑛 ) n 𝑀 𝑑 𝐻 ( π’š 𝑀 ) 𝑝 𝑀 π‘›βˆ’π‘‚( 𝑛 )

44 Theorem 4 logarithm of # codewords n 𝑀 𝑑 𝐻 ( π’š 𝑀 )

45 Theorem 4 Too few codewords => Not deniable logarithm of
n 𝑀 𝑑 𝐻 ( π’š 𝑀 )

46 Summary

47 Summary


Download ppt "Reliable Deniable Communication: Hiding Messages in Noise"

Similar presentations


Ads by Google