Presentation is loading. Please wait.

Presentation is loading. Please wait.

Deploying QoS for Enterprise Network Infrastructures Mark Montañez Enterprise Solutions Engineering Design Team: CANI - QoS.

Similar presentations


Presentation on theme: "Deploying QoS for Enterprise Network Infrastructures Mark Montañez Enterprise Solutions Engineering Design Team: CANI - QoS."— Presentation transcript:

1 Deploying QoS for Enterprise Network Infrastructures Mark Montañez Enterprise Solutions Engineering Design Team: CANI - QoS

2 Session Objectives To be able to design and implement a converged voice, video, and data network that can guarantee voice quality while enabling video conferencing and mission critical data applications More information available here: QoS SRND IP Tel SRND

3 The Enterprise Network Design Model
The OSI Stack Revisited Business Layer Application Layer Highly Available, QoS-Enabled Infrastructure Layer

4 3 Steps for Implementing QoS
Classification—Marking the packet with a specific priority denoting a requirement for special service from the network Scheduling—Assigning packets to one of multiple queues (based on classification) for preferential treatment throughout the network Provisioning—Accurately calculating the required bandwidth for all applications plus element overhead

5 QoS Is Needed to Minimize Packet Loss, Delay and Delay Variation
Where QoS Is Needed Central Campus Remote Branch WAN QoS—Campus Access Graphics not bleeding to edge of slide QoS—Campus Dist. QoS—WAN QoS—Branch Speed and duplex settings Classification/trust on IP phone, VC station, content service, and Citrix server Multiple queues on IP phone and access ports Layer 3 policing for content distribution Multiple queues on all ports; priority queuing for VoIP WRED within data queues for congestion management Low-latency queuing Data traffic queue provisioning Link fragmentation and interleave Traffic shaping Admission control Speed and duplex settings Classification/trust on IP phone, VC station, Content service and Citrix traffic Multiple queues on IP phone and access ports

6 Agenda Quality Concerns with IP Telephony, Multimedia Applications and Mission-Critical Data General Enterprise QoS Design Considerations Connecting the End-Points Designing the Campus Enabling the WAN QoS Impact VoIP and the Telecommuter Questions and Answers Summary

7 Example of PCM (64Kbps) IP Telephony Call
Single PCM VoIP Call Consistent, easily managed packet rate (default 50pps) A G.711 call is really ~80Kbps over a data network Packet loss Current Cisco GW DSP CODEC algorithms can correct for 30 msec of lost voice—1 G.729A voice packet contains 20 msec of voice One lost FAX over IP packet causes a MODEM retrain; 2 drops cause a call disconnect Causes of packet loss: Network quality, network congestion and delay variation (jitter buffer under-runs and over-runs)

8 Example of 384 Kbps Video (30 fps) Conferencing Traffic (CIF)
“I” Frame 1024–1518 Bytes “I” Frame 1024–1518 Bytes 600Kbps 30pps “P” and “B” Frames 128–256 Bytes 15pps 32Kbps “I” frame is a full sample of the video “P” and “B” frames use quantization via motion vectors and prediction algorithms

9 Video Conferencing Traffic Packet Size Breakdown (CIF)
1025–1500 Bytes 37% 65–128 Bytes 1% 129–256 Bytes 34% 513–1024 Bytes 20% 257–512 Bytes 8%

10 Some Applications that Require QoS
Citrix DLSw+ PeopleSoft Oracle ERP— underlying apps PC replication/ multicast applications Video distribution FTP Batch updates Backups Napster KaZaa Morpheus Grokster

11 Provisioning for Data: General Principles
Profile applications to their basic network requirements Don’t over-engineer provisioning Use proactive policies before reactive (policing) policies Seek executive endorsement of relative ranking of application priority prior to rolling out QoS policies for data

12 Agenda Quality Concerns with IP Telephony, Multimedia Applications and Mission-Critical Data General Enterprise QoS Design Considerations Connecting the End-points Designing the Campus Enabling the WAN QoS Impact VoIP and the Telecommuter Questions and Answers Summary

13 Layer 2 and 3 Traffic Classification
Layer Q/p TAG 4 Bytes PREAM. SFD DA SA Type PT DATA FCS Three Bits Used for CoS (802.1D User Priority) PRI CFI VLAN ID Layer 3 IPV4 Version Length ToS 1 Byte Len ID Offset TTL Proto FCS IP-SA IP-DA Data 7 6 5 4 3 2 1 IP Precedence Flow Control for DSCP DSCP Standard IPV4: Three MSB Called IP Precedence (Diffuser May Use Six D.S. Bits Plus Two for Flow Control)

14 Diffuser Code Points (DSCP)
Diff-Serv Behaviors Per-Hop Behaviors (PHB) Diffuser Code Points (DSCP) Expedited Forwarding EF 101110 Assured Forwarding Low Drop Prêt Med Drop Prêt High Drop Prêt Class Selector (CS) 4 AF41 AF42 AF43 Class Selector (CS) 3 AF31 AF32 AF33 Class Selector (CS) 2 AF21 AF22 AF23 Class Selector (CS) 1 AF11 AF12 AF13 Best Effort 000000

15 Diffuser Code Points (DSCP)
Diff-Serv Behaviors Per-Hop Behaviors (PHB) DSCP <BE1 <BE2 <BE3 BE AF11 AF12 AF13 AF21 AF22 AF23 AF31 AF32 AF33 AF41 AF42 AF43 EF Decimal 2 4 6 10 12 14 18 20 22 26 28 30 34 36 38 46 Binary 000010 000100 000110 000000 001010 001100 001110 010010 010100 010110 011010 011100 011110 100010 100100 100110 101110 IP PREC 1 3 5 000 001 010 011 100 101 Diffuser Code Points (DSCP) Expedited Forwarding EF 101110 Assured Forwarding Low Drop Prêt Med Drop Prêt High Drop Prêt Class Selector (CS) 4 AF41 AF42 AF43 Class Selector (CS) 3 AF31 AF32 AF33 Class Selector (CS) 2 AF21 AF22 AF23 Class Selector (CS) 1 AF11 AF12 AF13 Best Effort 000000

16 Designing the Campus General Guidelines
A robust, modern switching design is a requirement Designing High-Performance Campus Intranets with Multilayer Switching Gigabit Campus Design Gigabit Campus Network Design— Principles and Architecture Multiple queues are required on all interfaces to prevent TX queue congestions/drops RTP bearer traffic should always go into the highest priority queue; control should go into separate queue

17 Building the Branch Office
General Guidelines The WAN branch router must support advanced Cisco QoS tools Map between layer 2 and layer 3 classification schemes Use a branch switch with multiple queues 802.1Q trunking between the router and switch for multiple VLAN support (separation of voice/data traffic) is preferred

18 Enabling the WAN General Guidelines Queuing
QoS Enabled WAN Queuing Use CBWFQ for data on all WAN interfaces in a converged network LLQ for VoIP and video conferencing Traffic shaping is required for all frame-relay and ATM/FR networks If running VoIP, use LFI on WAN connections below 768Kbps Don’t use LFI on any video over IP solutions with VoIP Use cRTP carefully

19 VoIP Over IPSec VPNs General Guidelines VPN
Crypto is a FIFO queue, so: Take steps to not over drive the crypto engines capabilities (CAR, skip crypto for voice, new code coming, etc.) Use pre-classify when more than ToS byte used for classification If using IP mc MoH, IPSec GRE tunnel is required cRTP does not work w/IPSec See ESE SOHO VPN QoS Design Guide (Part of QoS SRND) See ESE Web Site V3PN Design Guide (available through your SE)

20 Agenda Quality Concerns with IP Telephony, Multimedia Applications and Mission-Critical Data General Enterprise QoS Design Considerations Connecting the End-Points Designing the Campus Enabling the WAN QoS Impact VoIP and the Telecommuter Questions and Answers Summary

21 Classification Tools: Trust Boundaries
Endpoints Access Distribution Core WAN Agg. 1 2 3 Trust Boundary A device can be trusted if it correctly classifies packets For scalability, classification should be done as close to the edge as possible The outermost trusted devices represent the trust boundary 1 and are optimal, 3 is acceptable (if access switch cannot perform classification) 1 2 3

22 PC CoS Settings Are Not Trusted
IP Phone Switch ASIC Untrusted: Phone ASIC Will Re-Write CoS 0 COS = 5 COS = 5 COS = 7 COS = 0 set port qos <mod/port> trust-ext _____ Only applies to port trust on the IP phone PC Ethernet port Un-related to actual cat6k port trust set port qos <mod/port> trust ____ Applies to the actual switch port trust rules untrusted (default), trust-cos, trust-ipprec, trust-dscp Some 6k 10/100 cards require an additional ACL to actually enable port trust

23 Connecting the Video Conferencing Stations
L3 Aware Watch physical speed/duplex settings/negotiation Trust classification of known room systems but filter on assigned IP address; VC station is in a conference room where anyone has access to the Ethernet port Use H.323 proxy to classify traffic from PC-based VC for admission to WAN PQ All video conferencing traffic should be set to DSCP AF41

24 Integrating DLSw+ L3 Aware Default is IP Precedence 5 with no configuration; can cause PQ over subscription if not accounted for trust-ipprec from router generating DLSw+ traffic Use the dlsw remote-peer priority to use the different DLSw+ ports; change the default DLSw+ IP Prec mapping dlsw remote-peer 0 tcp priority dlsw tos map high 2 medium 2 normal 2 low 2 DLSw+ is not DSCP aware so we can only set the IP Precedence; admission to mission critical class needs to take this into account Place in bandwidth defined class-based weighted fair queue

25 Agenda Quality Concerns with IP Telephony, Multimedia Applications and Mission-Critical Data General Enterprise QoS Design Considerations Connecting the End-Points Designing the Campus Enabling the WAN QoS Impact VoIP and the Telecommuter Questions and Answers Summary

26 Is QoS Needed in the Campus?
“Just throw more bandwidth at it. That will solve the problem!” Transmit Buffer Management Is Just as Important as Bandwidth Management

27 Transmit Queue Congestion—WAN
Queued 128k Uplink WAN Router 100 meg in 128 kb/s out—packets serialize in faster than they can serialize out Packets queued as they wait to serialize out slower link

28 Transmit Queue Congestion—LAN
1 Gig Link Queued 100 Meg Link Distribution Switch Access Switch 1 gig in 100 meg out—packets serialize in faster than they can serialize out Packets queued as they wait to serialize out slower link Many access ports aggregated into single distribution link; instantaneous periods of congestion

29 Transmit Queue Congestion— The Answer
Multiple queues allow us to protect the queue containing important traffic from drops Drops happen in BE only queue(s) Queue Mgr Queue 1 Queue 2 RR/WRR/PQ Queue Scheduler Round Robin, Weighted Round Robin or Priority Queuing Used for Scheduling between Queues Data Voice

30 Transmit Queue Visibility
Queue Mgr RR/WRR/PQ Queue Scheduler Queue 2 Voice Data Queue 1 Cat 6k CatOS - show qos statistics 4/1 Cat 4500 SupIV - show int fa3/2 count all Cat 3550 – show mls qos int statistics fa3/2

31 Transmit Queue—Visibility 4500 SUPIV
Queue Mgr RR/WRR/PQ Queue Scheduler Queue 2 Voice Data Queue 1 4006-SUPIII-Access#sh int g3/2 count all . Port InPkts OutPkts Gi3/ Port Tx-Bytes-Queue-1 Tx-Bytes-Queue-2 Tx-Bytes-Queue-3 Tx-Bytes-Queue-4 Gi3/ Port Tx-Drops-Queue-1 Tx-Drops-Queue-2 Tx-Drops-Queue-3 Tx-Drops-Queue-4 Gi3/ Port Rx-No-Pkt-Buff RxPauseFrames TxPauseFrames PauseFramesDrop

32 Access Layer Classification and Scheduling
Required towards Phone and Distribution Layer Core QoS Required Distribution Access

33 Queuing/Scheduling Capabilities Depend on Hardware:
Campus QoS Catalyst Switches which Support Multiple Queues Queuing/Scheduling Capabilities Depend on Hardware: Access 2900/3500—2Q1T 2950 4Q (priority schedule or WRR) 3550—1P3Q2T or 4Q2T 4000/SUPII—2Q1T 4500/SUPIV—1P3Q2T (priority config) 6500—2Q2T TX (10/100 classic) 1Q4T RX (10/100 classic) 1P2Q2T TX (gig classic) 1P1Q4T RX (gig classic) Distribution/core 4500/SUPIV—1P3Q2T 6500—2Q2T TX (10/100 classic) 1Q4T RX (10/100 classic) 1P2Q2T TX (gig classic) 1P1Q4T RX (gig classic) 1P3Q1T TX (10/100 fabric) 1P1Q RX (10/100 fabric) 1P2Q1T TX (gig fabric) 1P1Q8T RX (gig fabric)

34 Queuing/Scheduling Capabilities Depend on Hardware:
Campus QoS Catalyst Switches which Support Multiple Queues Queuing/Scheduling Capabilities Depend on Hardware: 1P2Q2T 1P2Q2T—One priority queue 1P2Q2T—Two additional queues 1P2Q2T—Two drop thresholds for each queue 2Q2T 2Q2T—Two queues 2Q2T—Two drop thresholds for each queue

35 QoS in Catalyst 3550 4 transmit queues (1P3Q2T or 4Q2T)
Need to configure PQ and insure that CoS 5 traffic serviced via PQ Configurable PQ for 4th queue priority-queue out Configurable CoS to specific queue wwr-queue 4 5 Configurable queue depth (expert mode) Configurable queue weight (expert mode) 802.1p, DSCP or ACL-based QoS Trust DSCP, or CoS (policy maps) Can set DSCP or CoS by port (marked/rewrite or unmarked) Mapping from CoS to DSCP/DSCP to CoS Now shipping with inline power 6500 6500 3550 3550 3550

36 Catalyst 3550 Example Access Layer—Access Port and Uplink
mls qos map cos-dscp mls qos ! interface GigabitEthernet0/12 description Uplink to Distribution no ip address flowcontrol send off mls qos trust dscp wrr-queue cos-map 4 5 priority-queue out interface Fastthernet0/1 description to IP Phone mls qos trust CoS switchport voice vlan 111 switchport access vlan 11 switchport priority extend cos 0 6500 6500 Boldface and animation 3550 3550 3550

37 Catalyst 3550 Example Access Layer—Classification 6500 6500
mls qos map cos-dscp mls qos ! class-map match-all VoIP-Bearer match access-group name VoIP-Bearer class-map match-all Mission-Critical match access-group name Mission-Critical class-map match-all VoIP-Control match access-group name VoIP-Control policy-map VoIP-Policy class VoIP-Control set ip dscp 26 class VoIP-Bearer set ip dscp 46 class Mission-Critical set ip dscp 18 interface GigabitEthernet0/1 description Classification no ip address flowcontrol send off service-policy in VoIP-Policy wrr-queue cos-map 4 5 priority-queue out 6500 6500 Boldface and animation 3550 3550 3550

38 QoS in Catalyst 4500—Access (SUPIV)
4 queues (1P3Q2T or 4Q2T) Need to configure PQ and insure that CoS 5 traffic serviced via PQ Configurable PQ for 3rd queue tx-queue 3 Priority high Configurable queue depth (expert mode) Configurable queue weight (expert mode) 802.1p, DSCP or ACL-based QoS (policy maps) Can set DSCP or CoS by port (marked/rewrite or unmarked) Trust DSCP or CoS Mapping from CoS to DSCP/DSCP to CoS 4500 shipping with inline power (no PEM) 4000SUPIII

39 Catalyst 4000 (SUPIII) Example
Access Layer—Access Port and Uplink qos map cos 1 to dscp 10 qos map cos 2 to dscp 18 qos map cos 3 to dscp 26 qos map cos 4 to dscp 34 qos map cos 5 to dscp 46 qos ! interface GigabitEthernet1/1 description Uplink to Distribution qos trust dscp no snmp trap link-status tx-queue 3 priority high interface FastEthernet4/1 description To IP Phone qos trust cos switchport voice vlan 111 switchport vlan 11 switchport priority extend cos 0 Core Distribution Access 4000 Cleanup with annimations and build-out

40 Catalyst 4000 (SUPIII) Example
Access Layer—Classification qos map cos 1 to dscp 10 qos map cos 2 to dscp 18 qos map cos 3 to dscp 26 qos map cos 4 to dscp 34 qos map cos 5 to dscp 46 qos ! class-map match-all VoIP-Bearer match access-group name VoIP-Bearer class-map match-all Mission-Critical match access-group name Mission-Critical class-map match-all VoIP-Control match access-group name VoIP-Control policy-map VoIP-Policy class Mission-Critical set ip dscp 18 class VoIP-Control set ip dscp 26 class VoIP-Bearer set ip dscp 46 interface GigabitEthernet1/1 qos trust cos service-policy in VoIP-Policy tx-queue 3 priority high Core Distribution Access 4000 Cleanup with annimations and build-out

41 QoS in 6500 Switches—Access (PFC)
Redundant SUP’s, transmit and receive queues, priority queues and multiple drop thresholds 802.1p, DSCP or ACL-based QoS (policy maps) Trust DSCP or CoS Can set by port DSCP or CoS (marked/rewrite or unmarked) Mapping from CoS to DSCP/DSCP to CoS Port can trust DSCP, IP Prec or CoS Recommended: trust-cos (access to RX PQ) 10/100 cards require an additional step of configuring ACL to trust traffic Output scheduling consists of: Assigning traffic to queues based on CoS Configuring threshold levels Modifying buffer sizes (expert mode) Assigning weights for WRR (expert mode) 6500

42 Catalyst 6500 Example Access Layer—Catalyst 6000 Access
cat6k-access> (enable) set qos enable cat6k-access> (enable) set qos cos-dscp-map cat6k-access> (enable) set qos ipprec-dscp-map cat6k-access> (enable) set qos map 1p2q2t tx 2 1 cos 3 cat6k-access> (enable) set qos map 2q2t tx 2 1 cos 3 cat6k-access> (enable) set port qos 5/1-48 trust trust-cos cat6k-access> (enable) set port qos 5/1-48 cos-ext 0 cat6k-access> (enable) set port qos 5/1-48 vlan-based cat6k-access> (enable) set qos acl ip ACL_IP-PHONES trust-cos ip any any cat6k-access> (enable) commit qos acl all cat6k-access> (enable) set qos acl map ACL_IP-PHONES 110 cat6k-access> (enable) set port qos 1/1-2 trust trust-cos Access 4000 Need to add citrix and dlsw server

43 Distribution Layer Classification and Scheduling
Required to/from Access Layer Core QoS Required Distribution Access

44 QoS in Catalyst 4500— Distribution (SUPIV)
4 queues (1P3Q2T or 4Q2T) Need to configure PQ and insure that CoS 5 traffic serviced via PQ Configurable PQ for 3th queue tx-queue 3 Priority high Configurable queue depth (expert mode) Configurable queue weight (expert mode) 802.1p, DSCP or ACL-based QoS (policy maps) Trust DSCP or CoS Can set by port DSCP or CoS (marked/rewrite or unmarked) Mapping from CoS to DSCP/DSCP to CoS Careful w/over-subscribed cards—32g max 4006 w/SUPIII

45 Catalyst 4500 (SUPIV) Example
Distribution Layer—Downlink Core qos map cos 1 to dscp 10 qos map cos 2 to dscp 18 qos map cos 3 to dscp 26 qos map cos 4 to dscp 34 qos map cos 5 to dscp 46 qos ! interface GigabitEthernet4/1 qos trust cos no snmp trap link-status tx-queue 3 priority high interface GigabitEthernet4/2 qos trust dscp Distribution Access 4000

46 QoS in 6500—Distribution Redundant sups, transmit and receive queues, priority queues and multiple drop thresholds CoS, DSCP or ACL-based QoS (policy maps) Trust DSCP or CoS Can set by port DSCP or CoS (marked/rewrite or unmarked) Mapping from CoS to DSCP/DSCP to CoS Port can trust DSCP, IP Prec or CoS Recommended: trust-cos (access to RX PQ) 10/100 cards require an additional step of configuring ACL to trust traffic Output scheduling consists of: Assigning traffic to queues based on CoS Configuring threshold levels Modifying buffer sizes (expert mode) Assigning weights for WRR (expert mode) 6500

47 Catalyst 6500 Example—Hybrid
Distribution Layer—Catalyst 6000 Hybrid 6500 cat6k-distrib> (enable) set qos enable cat6k-distrib> (enable) set qos ipprec-dscp-map cat6k-distrib> (enable) set qos cos-dscp-map cat6k-distrib> (enable) set qos map 1p2q2t tx queue 2 1 cos 3 cat6k-distrib> (enable) set qos map 2q2t tx queue 2 1 cos 3 cat6k-distrib> (enable) set port qos 1/1-2 trust trust-cos cat6k-distrib> (enable) set port qos 3/2 trust trust-dscp cat6k-distrib> (enable) set port qos 9/1 trust trust-dscp cat6k-distrib> (enable) set port qos 9/1 port-based cat6k-distrib> (enable) set qos acl ip ACL_TRUST-WAN trust-dscp ip any any cat6k-distrib> (enable) commit qos acl ACL_TRUST-WAN cat6k-distrib> (enable) set qos acl map ACL_TRUST-WAN 9/1 Still need more detail for Mission Critical Applications Rework slide… explination of what we are doing

48 Catalyst 6500 Example—Native
Distribution Layer—Catalyst 6000 mls qos mls qos map ip-prec-dscp mls qos map cos-dscp int range gigabitEthernet 1/1 - 2 wrr-queue cos-map 2 1 3 wrr-queue cos-map 2 2 4 ! Trust DSCP from the Layer-3 aware enabled Access Switch interface GigabitEthernet2/1 description trunk port to PFC enabled cat6k-access no ip address mls qos vlan-based mls qos trust dscp switchport switchport trunk encapsulation dot1q switchport mode trunk Native-IOS 6500

49 Catalyst 6500 Example—Native (Cont.)
Distribution Layer—Catalyst 6000 ! Trust CoS from the Layer 2 only Catalyst 4000 Access Switch interface GigabitEthernet2/2 description trunk port to layer 2-only cat4k no ip address wrr-queue cos-map 2 1 3 wrr-queue cos-map 2 2 4 mls qos vlan-based mls qos trust cos switchport switchport trunk encapsulation dot1q switchport mode trunk ! Trust CoS from the Layer 2 only 3500 Access Switch interface GigabitEthernet3/1 description trunk port to layer 2-only 3500 Native-IOS 6500

50 Is QoS Needed in the Campus?
“Buffer management is as important as bandwidth management…” Just Throw Bandwidth at It…NOT!

51 Auto QoS—What Is It? One Command per Interface to Enable and Configure QoS; Modify Global and Interface Settings to Make QoS for VoIP Work WAN Voice Gateways Callmanager Unity Voice Applications

52 Auto QoS What does it do? Campus WAN
Enforce Trust boundary at the phone Enforce Trust boundary on access ports and Uplink/Downlink Setup Priority Queuing where required Modify Queue Admission criteria where required Modify CoS to DSCP and IP Prec to DSCP maps where required WAN Builds QoS VoIP Modular Quality of Service Policy Provides LLQ for VoIP Bearer Provides Bandwidth CBWFQ for VoIP Control Sets up Traffic Shaping per QoS DG where required Sets up LFI (FRF.12 or MLP) where required

53 Agenda Quality Concerns with IP Telephony, Multimedia Applications and Mission-Critical Data General Enterprise QoS Design Considerations Connecting the End-Points Designing the Campus Enabling the WAN QoS Impact VoIP and the Telecommuter Questions and Answers Summary

54 QoS in the WAN General Guidelines
The sum of all queues should be <75% of available bandwidth; LLQ should not be more than 33% of link Use LLQ anytime VoIP over the WAN is involved Traffic shaping is a requirement for Frame Relay/ATM environments Use LFI techniques for all links below 768Kbps Don’t use LFI for any video conferencing over IP applications TX-ring sizes may require modifications Properly provision the WAN bandwidth Mission critical applications (Cytrix, DLSW+, etc.) Bandwidth hog applications = less than BE traffic Use cRTP carefully Less than best effort and mission critical data

55 Low-Latency Queuing Logic Tree
Layer 3 Queuing Subsystem Layer 2 Queuing Subsystem Low Latency Queuing Link Fragmentation and Interleave Police PQ Voice PQ PQ VC TX Ring Interleave VoIP-Cntrl Packets Out Packets In MC-Data CBWFQ Fragment Default WFQ LTBE

56 Low-Latency Queuing Logic Tree
Layer 3 Queuing Subsystem Layer 2 Queuing Subsystem Low Latency Queuing Link Fragmentation and Interleave Police PQ Voice Prior to 12.2 the Priority Queue Was Policing All the Time for Frame Relay on 7200 and below; for ATM and Leased Lines It Was Policing Only during Periods of Congestion; after 12.2 the PQ ONLY Polices when There Is Congestion on the Link for All Platforms PQ PQ VC TX Ring Interleave VoIP-Cntrl Packets Out Packets In MC-Data CBWFQ Fragment Default WFQ LTBE

57 LLQ Example—WAN Router
VoIP—Queuing Leased Lines: 12.2(5.6) class-map VoIP-Bearer match ip dscp EF class-map VoIP-Control match ip dscp AF31 class-map Video match ip dscp AF41 class-map mc-data match ip dscp AF21 match ip precedence 2 ! policy-map QoS-Policy class VoIP-Bearer priority percent 17 class Video priority percent class VoIP-Control bandwidth percent 2 class mc-data bandwidth percent 25 class class-default random-detect dscp-based fair-queue interface Multilink 1 service-policy output QoS-Policy ATM: 12.2(3) interface ATM1/0.1 point-to-point service-policy output QoS-Policy VoIPovFR: 12.2(3) map-class frame voipofr frame cir frame mincir 1280 frame bc 1280 frame frag 160 service-policy output QoS-Policy *See Roles and Config Documents Located at ESE Web Site

58 Calculating VoIP Bandwidth Requirements
Voice Payload in Bytes Packets per Second Bandwidth per Conversion CODEC Sampling Rate G.711 20 msec 160 50 80 kbps G.711 30 msec 240 33 74 kbps G.729A 20 msec 20 50 24 kbps G.729A 30 msec 30 33 19 kbps A more accurate method for provisioning is to include the Layer 2 Overhead into the bandwidth calculations: The bandwidth consumed by VoIP streams is calculated by adding the packet payload and all headers (inbits), then multiplying by the packet rate per second. This does not take into account the effect of such tools as RTP Header-Compression A more accurate method for provisioning VoIP is to include the layer 2 overhead, which includes: preambles, headers, flags, CRCs, and ATM cell-padding. ATM + Variable L2 Bytes (Cell Padding) 801.Q Ethernet + 32 L2 Bytes MLP + 13 L2 Bytes CODEC Frame-Relay + 8 L2 Bytes G.711 at 50 pps 93 kbps 86 kbps 84 kbps 106 kbps G.711 at 33 pps 83 kbps 78 kbps 77 kbps 84 kbps G.729A at 50 pps 37 kbps 30 kbps 28 kbps 43 kbps G.729A at 33 pps 27 kbps 22 kbps 21 kbps 28 kbps

59 Slow Link Efficiency Tools
Fragmentation and Interleave Not Needed on Links Greater than 768 kbps Before Real-Time MTU Elastic Traffic MTU 214 ms Serialization Delay for 1500 Byte Frame at 56 kbps After Elastic MTU Elastic MTU Real-Time MTU Elastic MTU 64 Bytes 8 ms 4 ms 2 ms 1 ms 640 Used Serialization Delay Matrix 56 kbps 9 ms 64 kbps 128 kbps 256 kbps 512 kbps 768 kbps 128 256 512 1024 1500 16 ms 1.2 ms 18 ms 32 ms 2.6 ms 36 ms 64 ms 5 ms 72 ms 128 ms 10 ms 144 ms 187 ms 93 ms 46 ms 23 ms 15 ms 214 ms 10ms Delay Frags Link or VC Speed Frag Size 56 kbps 70 Bytes 64 kbps 80 Bytes 128 kbps 160 Bytes 256 kbps 320 Bytes 512 kbps 640 Bytes 768 kbps 1000 Bytes 1536 kbps 2000 Bytes

60 Default TX-Ring Buffer Recommended TX- Ring Buffer
TX-Ring Sizing Misc. VoIP QoS Tools TX-Ring is an un-prioritized FIFO buffer which holds packets just before media transmission Used to make sure enough packets are queued in order to maximize available BW Will add to E-2-E delay numbers because serialization delay really equals: Serialization delay * number of packets in the TX-Ring buffer Default TX-Ring Buffer Sizing (Packets) 2 8192—Must Be Changed for Low Speed Vcs 64 (Per Main T1 Interface ) PPP 6 MLPPP ATM Frame Relay Media Recommended TX- Ring Buffer Sizing (Packets) 3 128 kbps 192 kbps 256 kbps 512 kbps 768 kbps Link Speed/ CIR/PVC

61 WAN QoS—Leased Lines VoIP over Leased-Line Minimum IOS 12.2(5.6)
Circuits Queuing Low-Latency Queuing LFI MLPPP—Link Speeds =< 768kb cRTP Supported—See Roles Doc at ESE Web Site

62 PPP QoS Example interface Multilink1
ip address no ip mroute-cache load-interval 30 service-policy output QoS-Policy ppp multilink ppp multilink fragment-delay 10 ppp multilink interleave multilink-group 1 ! interface Serial0 bandwidth 256 no ip address encapsulation ppp no fair-queue

63 WAN QoS—Frame Relay VoIP over Frame Relay Minimum IOS 12.2(5.6)
Network Queuing Low-Latency Queuing per VC Traffic Shaping Frame Relay Traffic Shaping Shape to CIR - flags and CRC overhead Bc = CIR/100 Be = 0 MINCIR >= Sum of all configured queues LFI FRF.12 Link Speeds < 768kbps Fragment Size = Max_Allowed_Jitter/(1 Byte/Line Speed in kbps) cRTP Supported—See Roles Document at ESE Web Site

64 Buffering which Will Cause Delay and Eventually Dropped Packets
Traffic Shaping—Why? Misc. VoIP QoS Tools Result: Buffering which Will Cause Delay and Eventually Dropped Packets 128 kbps 256 kbps T1 512 kbps Remote Sites Frame Relay, ATM 768 kbps T1 Central Site Central to remote site speed mismatch To avoid remote to central site over-subscription To prohibit bursting above committed rate What are you guaranteed above your committed rate?

65 Buffering which Will Cause Delay and Eventually Dropped Packets
Traffic Shaping—Why? Misc. VoIP QoS Tools Result: Buffering which Will Cause Delay and Eventually Dropped Packets 128 kbps What about Adaptive Shaping? ESE Did Some Testing; Net-Net the Buffers in the Frame Switch Must Be Tuned Extremely Small to Achieve Timely Notification of Frame Network Congestion; EDCS 256 kbps T1 512 kbps Remote Sites Frame Relay, ATM 768 kbps T1 Central Site Central to remote site speed mismatch To avoid remote to central site over-subscription To prohibit bursting above committed rate What are you guaranteed above your committed rate?

66 Frame Relay Traffic Shaping (FRTS) Operation
Bc 7000 Bits Interval = 125ms Interval = CIR 56000 bps Bits 7k 14k 21k 28k 35k 42k 49k 56k Important: Flags and CRC Are Not Included in Shaper Calculations Line Rate T1 4.5ms 0ms 125 250 375 500 625 750 875 1000 Time—1 Second When 7000bits (Bc) Transmitted Credits Are Exhausted No More Packets Are Sent in that Interval; This Can Happen at the 4.5ms Point of the Interval; This Could Add Milliseconds Delay in between Packets

67 Frame Relay QoS Example
interface Serial1 no ip address encapsulation frame-relay load-interval 30 frame-relay traffic-shaping ! interface Serial1.71 point-to-point bandwidth 256 ip address frame-relay interface-dlci 71 class VoIP map-class frame-relay VoIP frame-relay cir frame-relay bc 2509 frame-relay be 0 frame-relay mincir no frame-relay adaptive-shaping service-policy output QoS-Policy frame-relay fragment 320

68 Frame Relay QoS Example
interface Serial1 no ip address encapsulation frame-relay load-interval 30 frame-relay traffic-shaping ! interface Serial1.71 point-to-point bandwidth 256 ip address frame-relay interface-dlci 71 class VoIP map-class frame-relay VoIP frame-relay cir frame-relay bc 2509 frame-relay be 0 frame-relay mincir no frame-relay adaptive-shaping service-policy output QoS-Policy frame-relay fragment 320 Frame Format Flag 1 Byte Header 2 Bytes CRC 2 Bytes Flag 1 Byte Data Variable Allow for Flags and CRC 95% of of CIR Shape to CIR * Frame_Sz/[Frame_Sz + (Flags+CRC)] 256000*320 / (320+4) =

69 Frame Relay QoS Example
Flag 1 Byte Header 2 Bytes Data Variable CRC 2 Bytes Frame Format interface Serial1 no ip address encapsulation frame-relay load-interval 30 frame-relay traffic-shaping ! interface Serial1.71 point-to-point bandwidth 256 ip address frame-relay interface-dlci 71 class VoIP map-class frame-relay VoIP frame-relay cir frame-relay bc 2509 frame-relay be 0 frame-relay mincir no frame-relay adaptive-shaping service-policy output QoS-Policy frame-relay fragment 320 Traffic Shaping Do the Math… Link Speed CIR by the Formula 99% 98% 97% 96% 95% 94% 56 kbps 52968 55440 54880 54320 53760 52640 52080 64 kbps 60952 63360 62720 62080 61440 60160 59520 128 kbps 124872 126720 125440 124160 122880 120320 119040 Allow for Flags and CRC 95% of of CIR Shape to CIR * Frame_Sz/[Frame_Sz + (Flags+CRC)] 256000*320 / (320+4) = 256 kbps 252832 253440 250880 248320 245760 240640 238080 512 kbps 508816 506880 501760 496640 491520 481280 476160 768 kbps 764936 760320 752640 744960 737280 721920 714240 Formula = (Bandwidth X Fragment Size) ÷ (Fragment Size + 4 Bytes)

70 WAN QoS—ATM to Frame Relay
VoIP over Hybrid Networks 12.2(3) ATM Network Frame Relay Network FRF.8 Queuing Low-Latency Queuing per VC Generic Traffic Shaping Frame-Relay Traffic Shaping Central 7200 ATM Configuration ip cef ! interface ATM2/0 no ip address no ip mroute-cache no shutdown atm pvc ilmi no atm ilmi-keepalive interface ATM2/0.37 point-to-point pvc cisco37 0/37 tx-ring-limit 7 abr protocol ppp Virtual-Template2 interface Virtual-Template2 bandwidth 254 ip address service-policy output QoS-Policy ppp authentication chap ppp chap hostname HQ_7200 ppp chap password F1C2243 ppp multilink ppp multilink fragment-delay 10 ppp multilink interleave Remote 3600 Frame-Relay Configuration interface Serial6/0 description T1 to Frame Relay switch encapsulation frame-relay load-interval 30 no arp frame-relay frame-relay traffic-shaping interface Serial6/0.73 point-to-point description 3640 frame-relay interface-dlci 73 ppp Virtual-Template2 class VoIP-256kbs ip address ppp chap hostname R72HQ Traffic Shaping Shape to Low VC Set MLPPP fragment To fit in ATM Cells Shape to CIR—Flags and CRC Overhead Bc = CIR/100 Be = 0 MINCIR >= Sum of All Configured Queues LFI MLPPP over ATM and Frame-Relay in 12.2(3) cRTP See Roles Doc on ESE Web Site

71 ATM to Frame Relay Interworking QoS Example
Remote Frame-Relay Configuration interface Serial6/0 description T1 to Frame Relay switch no ip address encapsulation frame-relay load-interval 30 no arp frame-relay frame-relay traffic-shaping ! interface Serial6/0.73 point-to-point description 3640 frame-relay interface-dlci 73 ppp Virtual-Template2 class VoIP-256kbs interface Virtual-Template2 bandwidth 254 ip address service-policy output QoS-Policy ppp authentication chap ppp chap hostname R72HQ ppp chap password F1C2243 ppp multilink ppp multilink fragment-delay 10 ppp multilink interleave Central ATM Configuration interface ATM2/0 no ip address no ip mroute-cache no shutdown atm pvc ilmi no atm ilmi-keepalive ! interface ATM2/0.37 point-to-point pvc cisco37 0/37 tx-ring-limit 3 abr protocol ppp Virtual-Template2 interface Virtual-Template2 bandwidth 254 ip address service-policy output QoS-Policy ppp authentication chap ppp chap hostname HQ_7200 ppp chap password F1C2243 ppp multilink ppp multilink fragment-delay 10 ppp multilink interleave

72 WAN QoS—ATM VoIP over ATM Minimum 12.2(3) Queuing
Network Queuing Low-Latency Queuing per VC interface ATM2/0 no ip address no ip mroute-cache no shutdown atm pvc ilmi no atm ilmi-keepalive ! interface ATM2/0.37 point-to-point pvc cisco37 0/37 tx-ring-limit 7 abr protocol ppp Virtual-Template2 interface Virtual-Template2 bandwidth 256 ip address service-policy output QoS-Policy ppp authentication chap ppp chap hostname HQ_7200 ppp chap password F1C2243 ppp multilink ppp multilink fragment-delay 10 ppp multilink interleave Traffic Shaping Generic Traffic Shaping Shape to MCR/SCR, Based on Service Class LFI MLPPP over ATM in 12.2(3) cRTP 12.2(4)XV2—See Roles Doc ESE Web Site

73 PPPoATM MLPPP ATM Cell Optimization
PVC Speed Frag Size (Cells) PPP Multi-Link Fragment-Delay Bandwidth Real Delay 56 kbps 2 12 msec 57 kbps 13.7 msec 64 kbps 2 10 msec 68 kbps 12.0 msec 128 kbps 4 11 msec 132 kbps 12.0 msec 192 kbps 6 11 msec 202 kbps 12.0 msec 256 kbps 7 10 msec 260 kbps 10.5 msec 320 kbps 9 10 msec 337 kbps 10.8 msec 384 kbps 11 10 msec 414 kbps 11.0 msec 448 kbps 12 10 msec 452 kbps 10.3 msec 512 kbps 14 10 msec 529 kbps 10.5 msec 576 kbps 16 10 msec 606 kbps 10.7 msec 640 kbps 17 10 msec 644 kbps 10.2 msec 704 kbps 19 10 msec 721 kbps 10.4 msec 768 kbps 21 10 msec 798 kbps 10.5 msec Modify delay and bandwidth to arrive at fragment that is multiple of 48 bytes and still gives 10ms of serialization delay

74 ATM QoS Example interface ATM2/0 no ip address no ip mroute-cache
atm pvc ilmi no atm ilmi-keepalive ! interface ATM2/0.37 point-to-point pvc cisco37 0/37 tx-ring-limit 3 vbr-nrt protocol ppp Virtual-Template2 interface Virtual-Template2 bandwidth 132 ip address service-policy output QoS-Policy ppp authentication chap ppp chap hostname HQ_7200 ppp chap password F1C2243 ppp multilink ppp multilink fragment-delay 11 ppp multilink interleave Dual VC – get a config example from Scott Vandehouten

75 QoS in the Branch Office
If any VoIP over the WAN is part of the design, advanced QoS tools are a requirement; specifically, LLQ and LFI Branch router will typically be 1700, 2600, 3600, 3700. L3 to L2 classification for L2 QoS All of these support VoIP gateway interfaces: Classify VoIP traffic Catalyst scheduling capabilities depends on hardware: Catalyst 2950, 3550, or 3524-XL Catalyst 4000 Catalyst 6500 NBAR to classify LTBE traffic Mission critical applications

76 Branch Office Design 802.1Q Trunking Native VLAN=70 Aux VLAN=170
interface FastEthernet1/0 description Catalyst 4000 Branch Office Switch no ip address ip route cache policy no ip mroute-cache load-interval 30 speed 100 full-duplex ! interface FastEthernet1/0.70 description native subnet data encapsulation dot1Q 70 ip address service-policy output output-L3-to-L2 interface FastEthernet1/0.170 description native subnet voice encapsulation dot1Q 170 ip address cat4k> (enable) set vlan 70 name data70 cat4k> (enable) set vlan 170 name voice170 cat4k> (enable) set vlan 70 2/1-48 cat4k> (enable) set port host 2/1-48 cat4k> (enable) set port auxiliaryvlan 2/ cat4k> (enable) set port speed 2/1-49 auto cat4k> (enable) set trunk 2/49 on dot1q

77 Layer 3 to Layer 2 Classification Mapping at the Branch
Requires the mod-cli Commands Available in IOS 12.1(5)T* class-map L3-to-L2-VoIP-RTP match ip dscp EF class-map L3-to-L2-Video-Conf match ip dscp AF41 class-map L3-to-L2-VoIP-Control match ip dscp AF31 ! policy-map output-L3-to-L2 class L3-to-L2-VoIP-RTP set cos 5 class L3-to-L2-Video-Conf set cos 4 class L3-to-L2-VoIP-Control set cos 3 interface e0/0 service-policy output output-L3-to-L2 WAN

78 NBAR to Identify Applications
Leased Line, Frame Relay, ATM Network Peer to peer applications like Napster, KaZaa, Morpheus, Grokster Citrix and other applications that are not easy to profile/recognize—dynamic/changing ports PDLM definitions available at: Include definition of PDLM

79 NBAR to Classify P2P Apps and Assign Less than Best Effort Treatment
Download the latest PDLMs and copy to flash: Activate PDLM into RAM: ip nbar pdlm flash:gnutella.pdlm Use MQC “match protocol” statements to classify the traffic class-map match-any P2P match protocol gnutella match protocol fasttrack (identifies KaZaa, Morphius and Groekster) match protocol napster (napster.pdlm already embedded into IOS 12.2) WRED DSCP-based to cause drops from this traffic first policy-map P2P class P2P set dscp 2 Alternative is to place in separate bandwidth based queue with very small bandwidth guarantee policy-map QoS-Policy class class-default fair-queue random-detect dscp-based policy-map P2P-CBWFQ-MIN class P2P bandwidth percent 1

80 Config Example – NBAR for <BE traffic
ip nbar pdlm flash:gnutella.pdlm ip nbar pdlm flash:fasttrack.pdlm ! ip cef class-map match-all peer-2-peer match protocol napster match protocol napster non-std match protocol gnutella match protocol fasttrack policy-map peer-2-peer class peer-2-peer set ip dscp 2 interface FastEthernet0/0 ip address speed 100 full-duplex service-policy input peer-2-peer class-map match-all <BE match ip dscp 2 ! policy-map <BE class <BE bandwidth percent 2 class class-default fair-queue random-detect dscp-based interface Serial0/0 ip address service-policy output <BE

81 WAN QoS Summary Classification Scheduling Provisioning
Lot’s of tools—LLQ/CBWFQ, FRF.12, MLPPP, WRED, etc. More than just VoIP and video Mission-critical applications = bandwidth classes Bandwidth hogs = <BE treatment

82 Agenda Quality Concerns with IP Telephony, Multimedia Applications and Mission-Critical Data General Enterprise QoS Design Considerations Connecting the End-Points Designing the Campus Enabling the WAN QoS Impact VoIP and the Telecommuter Questions and Answers Summary

83 The Solution Test Bed— What We Tested
Leased Lines Frame Relay ATM to Frame Internetworking 125 Remote Sites

84 Traffic Profile—QoS without cRTP
1% TN3270 (TOS2) 10% FTP 15% DNS 4% Standard HTTP 10% Mission-Critical HTTP (TOS2) 10% RTP 45% Call Setup (TOS3) 5%

85 Details on the ESE Page Get the details at:
Performance documents (WAN Agg and branch routers) Roles document Config quick reference

86 Adding QoS Features—Loss
Impact of QoS on RTP (voice) streams (ToS 5) Lost data (RTP streams) from campus to branch drops from a range of 0.4—36% to 0% loss (all platforms) % Loss (Before) % Loss (After) Platform PVC Speed 7500 128 kbps 0.40 0.00 256 kbps 2.20 00.0 768 kbps 13.00 00.0 1536 kbps 17.50 00.0 7200 128 kbps 1.40 00.0 256 kbps 2.30 0.00 768 kbps 34.50 0.00 1536 kbps 36.58 0.00 3660 128 kbps 1.38 0.00 256 kbps 2.26 0.00 768 kbps 11.79 0.00 1536kbps 12.35 0.00

87 Adding QoS Features—Delay
RTP latency from campus to branch also improves Latency msec (Before) Latency msec (After) Platform PVC Speed 7500 128 kbps 22.60 256 kbps 21.80 768 kbps 621.00 22.80 1536 kbps 462.00 17.50 7200 128 kbps 24.21 256 kbps 23.82 768 kbps 347.25 22.04 1536 kbps 182.54 23.63 3660 128 kbps 24.28 256 kbps 22.44 768 kbps 482.86 22.15 1536kbps 258.74 22.08 Target for Latency Is < 50 msec

88 Adding QoS Features— Delay Variation
Jitter (RTP streams) from campus to branch also shows a noticeable improvement Jitter msec (Before) Jitter msec (After) Platform PVC Speed 7500 128 kbps 22.40 2.45 256 kbps 19.30 2.70 768 kbps 14.40 3.93 1536 kbps 10.00 3.70 7200 128 kbps 21.90 2.55 256 kbps 19.50 2.67 768 kbps 17.10 3.71 1536 kbps 11.70 3.30 3660 128 kbps 22.29 2.47 256 kbps 19.30 2.79 768 kbps 12.12 3.72 1536kbps 7.51 3.44 Target for Jitter Is < 5 msec

89 CPU Impact of Basic Voice QoS Features on 7500/VIP4-80
LLQ/LFI is part of the reason for the additional CPU load, in that PPS actually goes up, as the smaller (RTP) packets are prioritized:

90 Branch Router QoS Performance Tests
1751—Frame Relay and leased line—12.2(7.5)T 2651—Frame Relay, leased line and ATM—12.2(7.6) 3640—Frame Relay, leased line and ATM—12.2(7.6) 3725—Frame Relay, leased line and ATM (DS3)—12.2(7.6)T1 Pass/fail determined by RTP loss, delay and jitter (drawn from Chariot), and by router proc cpu Number of Calls Line Speed 128k 2 256k 4 768k 12 2.048M 28 4.5 M 80

91 3725 CPU Utilization QoS + cRTP
3725 CPU by WAN Media Type (QoS and cRTP Enabled x CPU (One Minute Avg.) Link Speed

92 3640 CPU Utilization QoS + cRTP
Frame Relay QoS Impact on CPU 3640 CPU Utilization PVC Bandwidth

93 Branch Device Summary 1751—Nice low-bandwidth branch router
3640—Problems with higher-bandwidths 3725—CPU to spare for what we tested; Results on the ESE QoS page: QOS Performance Guide for WAN Branch Platforms

94 Agenda Quality Concerns with IP Telephony, Multimedia Applications and Mission-Critical Data General Enterprise QoS Design Considerations Connecting the End-Points Designing the Campus Enabling the WAN QoS Impact VoIP and the Telecommuter Questions and Answers Summary

95 Crypto VPN Applications
Enterprise Branch VPN VPN Telecommuter VPN VPN VPN Client

96 VoIP + Crypto: Where Are We?
Some customers are already doing this V3PN launch underway Site to site, QoS enabled, and SOHO DG’s from your SE Project in the works—Queuing mechanism for the crypto engine (LLQ before crypto) Beginning to work w/ SPs on how to provide this service; CPN certification underway with AVVID friendly SLA’s:

97 Provisioning: VoIP Bandwidth Calculations with IPSec
VoIP Packet Voice Payload RTP Header UDP Header IPSec and GRE Headers Link Header IP Header X Bytes 12 Bytes 8 Bytes 20 Bytes 76/80 Bytes (Variable) X Bytes VoIP with IPSec MLPPP over ATM ATM Cells 53b Cells 48b Payload IP UDP RTP and IPSec CODEC PPP G.711 at 50 pps 112 kbps kbps kbps G.729A at 50 pps 54.4 kbps 56.8 kbps 63.6 kbps

98 Traffic Shaping Traffic shaping to uplink speed
DSL Backbone 3d-Party DSL Modem 806/1710 To Head End 128k Uplink 10/100m Ethernet Shaped Traffic shaping to uplink speed Avoid uplink congestion Ensure that QoS honored

99 Classification and Scheduling, LFI, and Traffic Shaping
Single-Box 827 DSL Backbone DSL To Head End Two-Box PIX 501 Variation: VPN 3002 Can Be Used in Place of PIX 501 if Firewall Not Required Third-Party Modem 806/1710 3d-Party DSL Modem Single-Box 9x5 Cable Backbone Cable Two-Box To Head End PIX 501 Variations: VPN 3002 Can Be Used in Place of PIX 501 if Firewall Not Required Third-Party Modem 806/1710 3d-Party Cable Modem ISDN, Wireless Etc. Others To Head End Others PIX 501 80x

100 DSL Options Classification and scheduling LLQ/CBWFQ
Single-Box 827 DSL Backbone To Head End Two-Box PIX 501 Third-Party Modem 3d-Party DSL Modem 806/1710 Classification and scheduling LLQ/CBWFQ Link fragmentation and Interleave (MLPPP) PPPoATM vs PPPoEthernet PPPoATM fragment size to ATM Cell considerations

101 Config Example—PPPoATM (827)
class-map match-all voice match ip dscp EF class-map match-all signaling match ip dscp AF31 ! policy-map telework class voice priority 64 class signaling bandwidth 8 class class-default fair-queue interface ATM0 no ip address pvc 1/100 vbr-rt tx-ring-limit 3 encapsulation aal5mux ppp dialer dialer pool-member 1 interface Dialer0 bandwidth 132 ip address negotiated ip nat outside encapsulation ppp no ip mroute-cache load-interval 30 dialer pool 1 dialer-group 1 service-policy output telework no cdp enable ppp authentication chap callin ppp chap hostname 827a ppp chap password 7 104D000A0618 ppp multilink ppp multilink fragment-delay 11 ppp multilink interleave

102 Agenda Quality Concerns with IP Telephony, Multimedia Applications and Mission-Critical Data General Enterprise QoS Design Considerations Connecting the End-Points Designing the Campus Enabling the WAN QoS Impact VoIP and the Telecommuter Questions and Answers Summary

103 What Questions Do You Have?

104 Summary Classification (trust boundary), scheduling, provisioning
Mission-critical data, voice, video QoS in the LAN—not just bandwidth—transmit buffer management/congestion avoidance Lots of tools—LLQ/CBWFQ, PQ, WRR, WRED, LFI—FRF.12, MLPPP, traffic shaping QoS is an end-to-end proposition; look Quality of Service Policy Manager (QPM) in World of Solutions and keep an eye out for Auto QoS…


Download ppt "Deploying QoS for Enterprise Network Infrastructures Mark Montañez Enterprise Solutions Engineering Design Team: CANI - QoS."

Similar presentations


Ads by Google