Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jihye Chun Kyungjin Lee Rick Jantz Yang Song

Similar presentations


Presentation on theme: "Jihye Chun Kyungjin Lee Rick Jantz Yang Song"— Presentation transcript:

1 Jihye Chun Kyungjin Lee Rick Jantz Yang Song
Bruin at Work Jihye Chun Kyungjin Lee Rick Jantz Yang Song

2 Regression Statistics
Cost Regression SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 5 ANOVA df SS MS F Significance F Regression 2 3.23E-05 Residual 2000 1000 Total 4 Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 7680 X Variable 1 15.94 X Variable 2

3 Regression Statistics
Revenue Regession SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 5 ANOVA df SS MS F Significance F Regression 2 3.05E+08 1.52E+08 Residual 585636 Total 4 3.06E+08 Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept X Variable 1 X Variable 2

4 Basic Equations TC = 7680 + 15.94Q – 0.0012Q2
TR = Q – Q2 Profit = Q Q2

5 Optimal Quantity and Price
d(Profit)/d(Q) = Q – 3.31 Q = 2364 P(Q) = TR/Q = 21203/Q – Q P(2364) =

6 A General Model Two regressions: Cost and Revenue
Two X-values used in regression: Q and Q2 Inputs can be altered to fine the optimal price Green = input Red = output B1 B2 B3 Cost 7680 15.94 Revenue 21203 12.63 Profit 13523 -3.31 0.0007 Optimal Values Q P 20.42

7 Regression Statistics
Increase in Demand B1 B2 B3 Cost 7680 15.94 Revenue 23323 12.63 Profit 15643 -3.32 0.0008 Optimal Values Q P 22.18 SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 5 ANOVA df SS MS F Significance F Regression 2 3.69E+08 1.84E+08 Residual Total 4 3.7E+08 Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept X Variable 1 X Variable 2

8 Optimistic Estimations
B1 B2 B3 Cost 7680 15.94 Revenue 19082 12.63 Profit 11402 -3.31 0.0007 Optimal Values Q P 18.71 SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 5 ANOVA df SS MS F Significance F Regression 2 2.47E+08 1.23E+08 Residual Total 4 2.48E+08 Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept X Variable 1 X Variable 2

9 Conclusions Optimal Price is slightly higher than current price
Our Analysis is very sensitive to changing circumstances Given the data available, P = 20 is a reasonable Price As demand increases, we should raise our price and cut our quantity produced


Download ppt "Jihye Chun Kyungjin Lee Rick Jantz Yang Song"

Similar presentations


Ads by Google