Presentation is loading. Please wait.

Presentation is loading. Please wait.

Scanning Probe Microscopy: Atomic Force Microscope

Similar presentations


Presentation on theme: "Scanning Probe Microscopy: Atomic Force Microscope"— Presentation transcript:

1 Scanning Probe Microscopy: Atomic Force Microscope
Fabrication and Characterization of Nanomaterials 2006 Summer Laboratory Course Hui She

2 Scanning Probe Microscope (SPM)
A group of instrument for surface measurement and other applications Atomic force microscope (AFM), Electron force microscope (EFM), Scanning tunneling microscope (STM), Magnetic force microscope (MFM), etc. Wide range materials (hard, soft) Atomic to micro level Simple operation High resolution One equipment with multi-functions

3 SPM Principle SPM tip tipholder piezo translator sample piezo translator SPM tip motor control Sample stage a b SPM scanners are made from a piezoelectronic material that expands and contracts proportionally to an applied voltage The piezo scanner moves the sample relative to the tip The sample is stationary while the scanner moves the tip

4 SPM Principle Movement of the piezo scanner and the tip z x y

5 Interatomic force vs distance
SPM principle Interatomic force vs distance

6 Atomic Force Microscope (AFM)
Measures the force between tip and sample surface Applies to all kinds of materials insulator, semiconductor, conductor, organics, etc Operates in three different modes Contact mode Non-contact mode or intermittent mode Tapping mode Operation force lead to bending or deflection of the cantilever, photo diode detector measures cantilever deflection All kind of material can be used in various researches on the study of physics chemistry, bio science, material science, medical science as well as semiconductor devices. Applications include Materials Evaluation: ·           Surface roughness on implanted silicon wafers Thermal properties such as thermal conductivity, glass transition temperature (Tg), and melting temperature of various phases of a blended polymer measured down to the nanometer scale Surface profiles and magnetic field mapping of recording media or reading heads Nanomechanical testing Failure Analysis   Rapid hot-spot analysis of powered electronic devices Defect analysis of compact disk stampers Quality Control ·           Surface profiles of thin film and coatings Metrology of semiconductor devices and compact disks Surface finish of substrates for thin film deposition

7 AFM AFM tip tipholder piezo translator sample piezo translator AFM tip
motor control AFM tip sample piezo translator piezo translator AFM tip Sample stage

8 AFM Three common types of AFM tip (sharper tip, higher resolution)
b c Three common types of AFM tip (sharper tip, higher resolution) (a) Normal tip (b) Super tip (c) Ultra sharp tip

9 AFM Operation Sharp tip is scanned over a surface with feedback control. Piezoelectric z-axis actuator (drive) maintains the tip at a constant force or height above the sample surface. Laser reflection from the probe head is monitored by two photo-diodes. Photodetector measures the difference in light intensities between the upper and lower photodiode, and then converts to voltage. Feedback from the photodiode difference signal controls the z-axis position through software from the computer.

10 AFM Operation Laser Mirror Photodetector Amplifier Register Sample
Probe Cantilever

11 AFM Modes Contact Mode: repulsive mode
Soft physical contact with the sample Force range from nano to micro Newton in ambient conditions Tip does not oscillate Reasonably hard materials most metals, ceramics, polymers, etc. Cannot follow abrupt edges or tall steep features Cantilever is less expensive than others Easier to set-up and use with instrument than other modes Able to get lateral friction forces on the sample surface Possible to damage the surface

12 Contact mode (stationary sample)
AFM Modes Contact mode (stationary sample)

13 AFM Modes Non-Contact Mode: attractive force mode
One of several vibrating cantilever techniques Cantilever oscillating near the surface of a sample Uses Van der Waals, electrostatic, magnetic or capillary force for producing images Very low force between the cantilever tip and the sample surface Best for soft or elastic samples Cantilever more expensive than contact mode Tip does not touch the sample surface

14 Non-contact mode (stationary sample)
AFM Modes Non-contact mode (stationary sample)

15 AFM Modes Intermittent-Contact Mode: tapping mode
Similar to non-contact mode except the tip barely hits or taps the sample surface Overcomes problems associated with friction, adhesion, electrostatic forces, and other difficulties that plague conventional AFM scanning methods Works well on all surfaces Less damaging to the sample than contact mode because of eliminating lateral forces such as friction Tip more expensive and harder to handle

16 Tapping mode (stationary sample)
AFM Modes Tapping mode (stationary sample)

17 (a) Contact Mode, (b) Non-contact Mode, and (c) Tapping Mode
AFM Modes (a) (b) (c) (a) Contact Mode, (b) Non-contact Mode, and (c) Tapping Mode

18 AFM Image Artifact Tip shape and size cause image distortion, especially for small objects

19 Mode Summary Contact Mode and non-contact mode
Contact mode (Repulsive mode) : less than few angstroms, repulsive force, soft physical contact with sample, Non-contact mode : order of tens to hundreds angstroms, attractive force

20 Comparison of AFM and Other imaging techniques
AFM vs. STM resolution of STM is better than that of AFM STM is applicable only to conducting samples AFM is applicable to both conductors and insulators AFM vs. SEM AFM provides extraordinary topographic contrast direct height measurements and unobscured views of surface features No (conductive) coating is necessary for AFM samples AFM vs. TEM 3D AFM image obtained without expensive sample preparation More complete information than two dimensional profiles from TEM

21 Comparison of AFM and Other imaging techniques
AFM image 2 nm by 2 nm area of a graphite surface STM image A circle of iron atoms (radius = 7.1 nm) arranged on top of a copper surface

22 AFM Applications for Nanotechnology
Measurement of nanodot, nanowire, devices, organic structures, etc Nanofabrication Patterning Deposition Manipulation

23 AFM Applications for Nanotechnology
Patterning Memory chips

24 AFM Applications for Nanotechnology
Deposition use coated AFM tips, such as Cr-coated tip

25 AFM Applications for Nanotechnology
Manipulation

26 SEM image of non-contact mode scanning Si tip
Our AFM System AFM Photo SEM image of non-contact mode scanning Si tip on the AFM cantilever Fig. Our atomic force microscope (AFM) system Atomic Force Microscope (AFM) Q-scopeTM 250 manufactured by Quesant Scanning Si tip on the AFM cantilever contact mode and non-contact mode less than 10 nm radius low resonant frequency (150~190 kHz ) between 31 and 64 N/m


Download ppt "Scanning Probe Microscopy: Atomic Force Microscope"

Similar presentations


Ads by Google