Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up For a-d: use a calculator to evaluate:

Similar presentations


Presentation on theme: "Warm Up For a-d: use a calculator to evaluate: "โ€” Presentation transcript:

1 Warm Up For a-d: use a calculator to evaluate: ๐ฌ๐ข๐ง ๐Ÿ“๐ŸŽ ๐จ , ๐œ๐จ๐ฌ ๐Ÿ’๐ŸŽ ๐จ
๐ฌ๐ข๐ง ๐Ÿ“๐ŸŽ ๐จ , ๐œ๐จ๐ฌ ๐Ÿ’๐ŸŽ ๐จ ๐ฌ๐ข๐ง ๐Ÿ๐Ÿ“ ๐จ , ๐œ๐จ๐ฌ ๐Ÿ”๐Ÿ“ ๐จ ๐œ๐จ๐ฌ ๐Ÿ๐Ÿ ๐จ , ๐ฌ๐ข๐ง ๐Ÿ•๐Ÿ— ๐จ ๐ฌ๐ข๐ง ๐Ÿ–๐Ÿ‘ ๐จ , ๐œ๐จ๐ฌ ๐Ÿ• ๐จ Fill in the blank. ๐ฌ๐ข๐ง๐Ÿ‘๐ŸŽยฐ=๐œ๐จ๐ฌโก___ยฐ ๐œ๐จ๐ฌ๐Ÿ“๐Ÿ•ยฐ=๐ฌ๐ข๐งโก___ยฐ

2 Section 8.4 Relationships Among the Functions
Objective: To simplify trig expressions and to prove trig identities

3 Cofuntion Relationships
Cofunction Identities, Degrees Cofunction Identities, Radians Replace 90 with ๐œ‹ 2 in each equation above

4 Difference between an identity and an equation
An identity is an equation that is true for all values of the variables. For example the equation 3x=12 is true only when x=4, so it is an equation but not an identity.

5 What are identities used for?
They are used in simplifying or rearranging algebraic expressions. The two sides of an identity are interchangeable, so we can replace one with the other at any time. In this section we will study identities with trig functions.

6 The Trigonometry Identities
There are dozens of identities in the field of trigonometry. Many websites list the trig identities. Many websites will also explain why identities are true. i.e. prove the identities. Example of such a site: click here

7 UC revisited Pythagorean Theorem: ๐‘ฅ 2 + ๐‘ฆ 2 =1

8 UC revisited Pythagorean Theorem: ๐‘๐‘œ๐‘  2 ๐œƒ+ ๐‘ ๐‘–๐‘› 2 ๐œƒ=1

9 Pythagorean Relationships (Identities)
๐‘๐‘œ๐‘  2 ๐œƒ+ ๐‘ ๐‘–๐‘› 2 ๐œƒ=1 ๐‘๐‘œ๐‘  2 ๐œƒ=1โˆ’ ๐‘ ๐‘–๐‘› 2 ๐œƒ ๐‘ ๐‘–๐‘› 2 ๐œƒ=1โˆ’ ๐‘๐‘œ๐‘  2 ๐œƒ

10 Reciprocal Identities
More Trigonometric Identities Quotient Identities Reciprocal Identities

11 Take the Pythagorean Identity and discover a new one!
Hint: Try dividing everything by cos2ฮธ sin2ฮธ + cos2ฮธ = 1

12 Take the Pythagorean Identity and discover a new one!
Hint: Try dividing everything by cos2ฮธ sin2ฮธ + cos2ฮธ = cos2ฮธ cos2ฮธ cos2ฮธ tan2ฮธ = sec2ฮธ Quotient Identity Reciprocal Identity Another Pythagorean Identity

13 Take the Pythagorean Identity and discover a new one!
Hint: Try dividing everything by sin2ฮธ sin2ฮธ + cos2ฮธ = 1

14 Take the Pythagorean Identity and discover a new one!
Hint: Try dividing everything by sin2ฮธ sin2ฮธ + cos2ฮธ = _ sin2ฮธ sin2ฮธ sin2ฮธ cot2ฮธ = csc2ฮธ Quotient Identity Reciprocal Identity A Third Pythagorean Identity

15 Pythagorean Identities
sin2q + cos2q = 1 tan2q +1 = sec2q sin2q = 1 - cos2q tan2q = sec2q -1 cos2q = 1 - sin2q cot2q +1 = csc2q cot2q = csc2q -1

16 In this section, you will be using identities to simplify expressions and to prove identities.

17 Simplify: ๐‘ก๐‘Ž๐‘›๐œƒ๐‘๐‘œ๐‘ ๐œƒ ๐‘ก๐‘Ž๐‘›๐ดโˆ—๐‘๐‘œ๐‘ก๐ด ๐‘ก๐‘Ž๐‘› 90ยฐโˆ’๐ด ๐‘๐‘œ๐‘ก๐‘ฆโˆ—๐‘ ๐‘–๐‘›๐‘ฆ ๐‘๐‘œ๐‘  ๐œ‹ 2 โˆ’๐‘ฅ
๐‘ก๐‘Ž๐‘› 90ยฐโˆ’๐ด ๐‘๐‘œ๐‘  ๐œ‹ 2 โˆ’๐‘ฅ 1โˆ’๐‘ ๐‘–๐‘›๐‘ฅ 1+๐‘ ๐‘–๐‘›๐‘ฅ ๐‘ ๐‘–๐‘› 2 ๐‘ฅโˆ’1 ๐‘ ๐‘’๐‘๐‘ฅโˆ’1 ๐‘ ๐‘’๐‘๐‘ฅ+1 ๐‘ก๐‘Ž๐‘›๐ดโˆ—๐‘๐‘œ๐‘ก๐ด ๐‘๐‘œ๐‘ก๐‘ฆโˆ—๐‘ ๐‘–๐‘›๐‘ฆ ๐‘๐‘œ๐‘ก 2 ๐‘ฅโˆ’ ๐‘๐‘ ๐‘ 2 ๐‘ฅ ๐‘๐‘œ๐‘ ๐œƒ+๐‘ ๐‘–๐‘›๐œƒ๐‘ก๐‘Ž๐‘›๐œƒ ๐‘๐‘œ๐‘ก 2 ๐œƒ 1โˆ’ ๐‘ ๐‘–๐‘› 2 ๐œƒ ๐‘ก๐‘Ž๐‘› 2 ๐‘ฅ ๐‘ ๐‘–๐‘›๐œƒ 1 ๐‘๐‘œ๐‘ก๐ด ๐‘๐‘œ๐‘ ๐‘ฆ ๐‘ ๐‘–๐‘›๐‘ฅ โˆ’1 ๐‘๐‘œ๐‘  2 ๐‘ฅ โˆ’๐‘๐‘œ๐‘  2 ๐‘ฅ

18 Simplify. Simplifying Trigonometric Expressions
Identities can be used to simplify trigonometric expressions. Simplify. 11) 10)

19 2. ๐‘Ž 1 ๐‘Ž โˆ’ ๐‘ 1 ๐‘ ๐‘ ๐‘’๐‘๐œƒ ๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐‘ก๐‘Ž๐‘›๐œƒ ๐‘๐‘œ๐‘ก๐œƒ
Simplify. ๐‘ก+ 1 ๐‘ก ๐‘ก ๐‘ก๐‘Ž๐‘›๐ด+ 1 ๐‘ก๐‘Ž๐‘›๐ด ๐‘ก๐‘Ž๐‘›๐ด ๐‘Ž 1 ๐‘Ž โˆ’ ๐‘ 1 ๐‘ ๐‘ ๐‘’๐‘๐œƒ ๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐‘ก๐‘Ž๐‘›๐œƒ ๐‘๐‘œ๐‘ก๐œƒ ๐‘ฆ ๐‘ฅ + ๐‘ฅ ๐‘ฆ 1 ๐‘ฅ๐‘ฆ ๐‘ ๐‘–๐‘›๐œƒ ๐‘๐‘œ๐‘ ๐œƒ + ๐‘๐‘œ๐‘ ๐œƒ ๐‘ ๐‘–๐‘›๐œƒ 1 ๐‘๐‘œ๐‘ ๐œƒ๐‘ ๐‘–๐‘›๐œƒ ๐‘ฅ+ ๐‘ฆ 2 ๐‘ฅ ๐‘๐‘œ๐‘ ๐œƒ+ ๐‘ ๐‘–๐‘› 2 ๐œƒ ๐‘๐‘œ๐‘ ๐œƒ

20

21

22

23 Reciprocal Identities

24 Cofunction Identities

25 Homework Page 321 #1-11 odds #13-20 all


Download ppt "Warm Up For a-d: use a calculator to evaluate: "

Similar presentations


Ads by Google