Presentation is loading. Please wait.

Presentation is loading. Please wait.

Animal Physiology Review A Visual Review

Similar presentations


Presentation on theme: "Animal Physiology Review A Visual Review"— Presentation transcript:

1 Animal Physiology Review A Visual Review
Chapters 11-Cell Communication Chapter 43-Immune System Chapter 48-Neurons, Synapses and Signaling Chapter 45-Hormones and Endocrine Chapter 40-Homeostasis

2 Figure 40.6 Signaling in the endocrine and nervous systems
2

3 Figure 40.UN01 Summary figure, Concept 40.2
3

4 Negative Feedback Loop-Blood Sugar

5 Positive Feedback-Uterine Contractions

6 Figure 40.16 Figure The thermostatic function of the hypothalamus in human thermoregulation. 6

7 S cells of duodenum secrete the hormone secretin ( ).
Figure 45.11 Pathway Example Stimulus Low pH in duodenum S cells of duodenum secrete the hormone secretin ( ). Endocrine cell Hormone Negative feedback Figure A simple endocrine pathway. Blood vessel Target cells Pancreas Response Bicarbonate release

8 Hypothalamus/ posterior pituitary
Figure 45.12 Pathway Example Stimulus Suckling Sensory neuron Hypothalamus/ posterior pituitary Posterior pituitary secretes the neurohormone oxytocin ( ). Neurosecretory cell Positive feedback Neurohormone Blood vessel Figure A simple neuroendocrine pathway. Target cells Smooth muscle in breasts Response Milk release

9 Peripheral nervous system (PNS) Central nervous system (CNS)
Figure 48.3 Sensory input Integration Sensor Motor output Figure 48.3 Summary of information processing. Effector Peripheral nervous system (PNS) Central nervous system (CNS) 9

10 Presynaptic cell Synaptic cleft
Figure 48.15 Presynaptic cell Postsynaptic cell Axon Synaptic vesicle containing neurotransmitter 1 Postsynaptic membrane Synaptic cleft Presynaptic membrane 3 Figure A chemical synapse. K Ca2 2 Voltage-gated Ca2 channel Ligand-gated ion channels 4 Na 10

11 Sodium- potassium pump
Figure 48.7 Key Na K Sodium- potassium pump OUTSIDE OF CELL Potassium channel Sodium channel Figure 48.7 The basis of the membrane potential. INSIDE OF CELL 11

12 Falling phase of the action potential 3
Figure Key Na K 4 Falling phase of the action potential 3 Rising phase of the action potential 50 Action potential 3 Membrane potential (mV) Threshold 4 2 50 1 1 5 2 Depolarization Resting potential 100 Figure The role of voltage-gated ion channels in the generation of an action potential. Time OUTSIDE OF CELL Sodium channel Potassium channel INSIDE OF CELL Inactivation loop 1 Resting state 5 Undershoot 12

13 Nucleus of Schwann cell Axon Myelin sheath
Figure 48.13 Node of Ranvier Layers of myelin Axon Schwann cell Schwann cell Nodes of Ranvier Nucleus of Schwann cell Axon Myelin sheath Figure Schwann cells and the myelin sheath. 0.1 m 13

14 Pathogens (such as bacteria, fungi, and viruses)
Figure 43.2 Pathogens (such as bacteria, fungi, and viruses) INNATE IMMUNITY (all animals) Barrier defenses: Skin Mucous membranes Secretions Recognition of traits shared by broad ranges of pathogens, using a small set of receptors Internal defenses: Phagocytic cells Natural killer cells Antimicrobial proteins Inflammatory response • Rapid response Figure 43.2 Overview of animal immunity. ADAPTIVE IMMUNITY (vertebrates only) Humoral response: Antibodies defend against infection in body fluids. Recognition of traits specific to particular pathogens, using a vast array of receptors Cell-mediated response: Cytotoxic cells defend against infection in body cells. • Slower response

15 Mast cell Red blood cells
Figure Pathogen Splinter Macro- phage Movement of fluid Signaling molecules Mast cell Capillary Phagocytosis Figure 43.8 Major events in a local inflammatory response. Red blood cells Neutrophil

16 (a) B cell antigen receptors and antibodies
Figure 43.10 Antigen receptor Antibody B cell Antigen Epitope Pathogen (a) B cell antigen receptors and antibodies Antibody C Figure Antigen recognition by B cells and antibodies. Antibody A Antibody B Antigen (b) Antigen receptor specificity

17 Displayed antigen fragment T cell
Figure 43.12 Displayed antigen fragment T cell T cell antigen receptor MHC molecule Antigen fragment Pathogen Host cell (a) Antigen recognition by a T cell Top view Figure Antigen recognition by T cells. Antigen fragment MHC molecule Host cell (b) A closer look at antigen presentation

18 Humoral (antibody-mediated) immune response
Figure 43.20 Humoral (antibody-mediated) immune response Cell-mediated immune response Key Antigen (1st exposure) Stimulates Engulfed by Gives rise to Antigen- presenting cell B cell Helper T cell Cytotoxic T cell Memory helper T cells Figure An overview of the adaptive immune response. Antigen (2nd exposure) Memory cytotoxic T cells Active cytotoxic T cells Plasma cells Memory B cells Secreted antibodies Defend against extracellular pathogens Defend against intracellular pathogens and cancer

19 Figure 11.5 Local signaling Long-distance signaling Target cell Electrical signal along nerve cell triggers release of neurotransmitter. Endocrine cell Blood vessel Neurotransmitter diffuses across synapse. Secreting cell Secretory vesicle Hormone travels in bloodstream. Target cell specifically binds hormone. Local regulator diffuses through extracellular fluid. Target cell is stimulated. Figure 11.5 Local and long-distance cell signaling by secreted molecules in animals. (a) Paracrine signaling (b) Synaptic signaling (c) Endocrine (hormonal) signaling

20 Relay molecules in a signal transduction pathway
Figure EXTRACELLULAR FLUID CYTOPLASM Plasma membrane 1 Reception 2 Transduction 3 Response Receptor Activation of cellular response Relay molecules in a signal transduction pathway Figure 11.6 Overview of cell signaling. Signaling molecule

21 G protein-coupled receptor Plasma membrane Activated receptor
Figure 11.7b G protein-coupled receptor Plasma membrane Activated receptor Signaling molecule Inactive enzyme GTP GDP GDP CYTOPLASM G protein (inactive) Enzyme GTP 1 2 GDP Activated enzyme Figure 11.7 Exploring: Cell-Surface Transmembrane Receptors GTP GDP P i 3 Cellular response 4

22 Signaling molecule (ligand) Ligand-binding site
Figure 11.7c Signaling molecule (ligand) Ligand-binding site  helix in the membrane Signaling molecule Tyrosines Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr CYTOPLASM Receptor tyrosine kinase proteins (inactive monomers) Dimer 1 2 Activated relay proteins Figure 11.7 Exploring: Cell-Surface Transmembrane Receptors Cellular response 1 Tyr Tyr P Tyr Tyr P Tyr Tyr P P Tyr Tyr P Tyr Tyr P Tyr Tyr P P Cellular response 2 Tyr Tyr P Tyr Tyr P Tyr Tyr P 6 ATP 6 ADP P Activated tyrosine kinase regions (unphosphorylated dimer) Fully activated receptor tyrosine kinase (phosphorylated dimer) Inactive relay proteins 3 4

23 Signaling molecule (ligand)
Figure 11.7d 1 2 3 Gate closed Ions Gate open Gate closed Signaling molecule (ligand) Plasma membrane Ligand-gated ion channel receptor Cellular response Figure 11.7 Exploring: Cell-Surface Transmembrane Receptors

24 Hormone (testosterone) EXTRACELLULAR FLUID
Figure Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.9 Steroid hormone interacting with an intracellular receptor. mRNA NUCLEUS New protein CYTOPLASM

25 Activated relay molecule
Figure 11.10 Signaling molecule Receptor Activated relay molecule Inactive protein kinase 1 Active protein kinase 1 Inactive protein kinase 2 ATP Phosphorylation cascade ADP Active protein kinase 2 P PP P i Figure A phosphorylation cascade. Inactive protein kinase 3 ATP ADP P Active protein kinase 3 PP P i Inactive protein ATP ADP P Active protein Cellular response PP P i

26 First messenger (signaling molecule such as epinephrine)
Figure 11.12 First messenger (signaling molecule such as epinephrine) Adenylyl cyclase G protein G protein-coupled receptor GTP ATP Second messenger cAMP Figure cAMP as a second messenger in a G protein signaling pathway. Protein kinase A Cellular responses

27 G protein-coupled receptor GTP
Figure Epinephrine Adenylyl cyclase G protein G protein-coupled receptor GTP ATP Second messenger cAMP Figure 45.7 Cell-surface hormone receptors trigger signal transduction. Protein kinase A Inhibition of glycogen synthesis Promotion of glycogen breakdown

28 Glucose 1-phosphate (108 molecules)
Figure 11.16 Reception Binding of epinephrine to G protein-coupled receptor (1 molecule) Transduction Inactive G protein Active G protein (102 molecules) Inactive adenylyl cyclase Active adenylyl cyclase (102) ATP Cyclic AMP (104) Inactive protein kinase A Active protein kinase A (104) Figure Cytoplasmic response to a signal: the stimulation of glycogen breakdown by epinephrine. Inactive phosphorylase kinase Active phosphorylase kinase (105) Inactive glycogen phosphorylase Active glycogen phosphorylase (106) Response Glycogen Glucose 1-phosphate (108 molecules)


Download ppt "Animal Physiology Review A Visual Review"

Similar presentations


Ads by Google