Download presentation
Presentation is loading. Please wait.
1
Multilayer Perceptron
Matlab Multilayer Perceptron
2
Multilayer: XOR Input patterns
3
Multilayer : XOR Target
4
Multilayer : XOR New Network
5
Multilayer : XOR View Network
6
Multilayer : XOR Train
7
Multilayer : XOR Performance
8
Multilayer : XOR Regression
9
Multilayer : XOR Test Data
10
Multilayer : XOR Simulate
11
Multilayer : XOR Simulate
12
Classification: Character recognition
APPCR1 PRPROB
13
Classification: Character recognition
Input patterns
14
Classification: Character recognition
Input patterns alphabet = [letterA,letterB,letterC,letterD,letterE,letterF,letterG,lette rH,letterI,letterJ,letterK,letterL,letterM,letterN,letterO,let terP,letterQ,letterR,letterS,letterT,letterU,letterV,letterW, letterX,letterY,letterZ];
15
Classification: Character recognition
Input patterns: suffer from noise alpha_noise= alphabet + randn(35,26)*0.5;
16
Classification: Character recognition
Input patterns: All p=[alphabet alpha_noise];
17
Classification: Character recognition
Target T= [eye(26) eye(26)];
18
Classification: Character recognition
New Network
19
Classification: Character recognition
View Network
20
Classification: Character recognition
Train
21
Classification: Character recognition
Performance
22
Classification: Character recognition
Regression
23
Classification: Character recognition
Test Data test_p = alphabet + randn(35,26)*0.25;
24
Classification: Character recognition
Simulate export
25
Classification: Character recognition
Simulate multilayer_char_test_out_2= compet(multilayer_char_test_out);
26
Classification: Character recognition
Simulate error= sum(sum(abs(multilayer_char_test_out_2-eye(26))))/2; 25!!!!!!!!!!!
27
Function Approimation: Sin
Input patterns: p=[-1:0.05:1]; p=2*pi*p;
28
Function Approimation: Sin
Target t=sin(p)+0.1*randn(size(p));
29
Function Approimation: Sin
plot(p, t, 'DisplayName', 'p', 'XDataSource', 'p', 'YDataSource', 't'); figure(gcf)
30
Function Approimation: Sin
New Network
31
Function Approimation: Sin
View Network
32
Function Approximation: Sin
Train
33
Function Approximation: Sin
Performance
34
Function Approximation: Sin
Regression
35
Function Approximation: Sin
Simulate testp=[pi/6, pi/4, pi/3, pi/2];
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.