Presentation is loading. Please wait.

Presentation is loading. Please wait.

Multilayer Perceptron

Similar presentations


Presentation on theme: "Multilayer Perceptron"— Presentation transcript:

1 Multilayer Perceptron
Matlab Multilayer Perceptron

2 Multilayer: XOR Input patterns

3 Multilayer : XOR Target

4 Multilayer : XOR New Network

5 Multilayer : XOR View Network

6 Multilayer : XOR Train

7 Multilayer : XOR Performance

8 Multilayer : XOR Regression

9 Multilayer : XOR Test Data

10 Multilayer : XOR Simulate

11 Multilayer : XOR Simulate

12 Classification: Character recognition
APPCR1 PRPROB

13 Classification: Character recognition
Input patterns

14 Classification: Character recognition
Input patterns alphabet = [letterA,letterB,letterC,letterD,letterE,letterF,letterG,lette rH,letterI,letterJ,letterK,letterL,letterM,letterN,letterO,let terP,letterQ,letterR,letterS,letterT,letterU,letterV,letterW, letterX,letterY,letterZ];

15 Classification: Character recognition
Input patterns: suffer from noise alpha_noise= alphabet + randn(35,26)*0.5;

16 Classification: Character recognition
Input patterns: All p=[alphabet alpha_noise];

17 Classification: Character recognition
Target T= [eye(26) eye(26)];

18 Classification: Character recognition
New Network

19 Classification: Character recognition
View Network

20 Classification: Character recognition
Train

21 Classification: Character recognition
Performance

22 Classification: Character recognition
Regression

23 Classification: Character recognition
Test Data test_p = alphabet + randn(35,26)*0.25;

24 Classification: Character recognition
Simulate export

25 Classification: Character recognition
Simulate multilayer_char_test_out_2= compet(multilayer_char_test_out);

26 Classification: Character recognition
Simulate error= sum(sum(abs(multilayer_char_test_out_2-eye(26))))/2; 25!!!!!!!!!!!

27 Function Approimation: Sin
Input patterns: p=[-1:0.05:1]; p=2*pi*p;

28 Function Approimation: Sin
Target t=sin(p)+0.1*randn(size(p));

29 Function Approimation: Sin
plot(p, t, 'DisplayName', 'p', 'XDataSource', 'p', 'YDataSource', 't'); figure(gcf)

30 Function Approimation: Sin
New Network

31 Function Approimation: Sin
View Network

32 Function Approximation: Sin
Train

33 Function Approximation: Sin
Performance

34 Function Approximation: Sin
Regression

35 Function Approximation: Sin
Simulate testp=[pi/6, pi/4, pi/3, pi/2];


Download ppt "Multilayer Perceptron"

Similar presentations


Ads by Google