Presentation is loading. Please wait.

Presentation is loading. Please wait.

9 Muscles and Muscle Tissue: Part B-Muscle Contraction and Signal Transmission.

Similar presentations


Presentation on theme: "9 Muscles and Muscle Tissue: Part B-Muscle Contraction and Signal Transmission."— Presentation transcript:

1 9 Muscles and Muscle Tissue: Part B-Muscle Contraction and Signal Transmission

2 Steps in Muscle Contraction

3

4 Requirements for Skeletal Muscle Contraction
Activation: neural stimulation at a neuromuscular junction Excitation-contraction coupling: Generation and propagation of an action potential along the sarcolemma Final trigger: a brief rise in intracellular Ca2+ levels

5

6 Events at the Neuromuscular Junction
Nerve impulse arrives at axon terminal ACh is released and binds with receptors on the sarcolemma Electrical events lead to the generation of an action potential PLAY A&P Flix™: Events at the Neuromuscular Junction

7

8

9 Destruction of Acetylcholine
ACh effects are quickly terminated by the enzyme acetylcholinesterase Prevents continued muscle fiber contraction in the absence of additional stimulation

10 Events in Generation of an Action Potential
Local depolarization - activation by motor neuron Generation and propagation of an action potential - flow of electrons (Na and K) to create electrical action potential Repolarization – return to resting state

11 Events in Generation of an Action Potential
Local depolarization: ACh binding opens chemically (ligand) gated ion channels Simultaneous diffusion of Na+ (inward) and K+ (outward) More Na+ diffuses, so the interior of the sarcolemma becomes less negative Local depolarization

12 Events in Generation of an Action Potential
Generation and propagation of an action potential: Local depolarization (End plate potential) spreads to adjacent membrane areas Voltage-gated Na+ channels open If Na+ influx reaches a critical threshold, an action potential is generated

13 Events in Generation of an Action Potential
Repolarization: Na+ channels close and voltage-gated K+ channels open K+ efflux rapidly restores the resting polarity Muscle fiber cannot be stimulated and is in a refractory period until repolarization is complete Ionic conditions of the resting state are restored by the Na+-K+ pump

14 2 1 3 Axon terminal Open Na+ Channel Closed K+ Channel Synaptic cleft
Action potential + Na+ K+ a t i z Generation and propagation of the action potential (AP) 2 r i o l a p d e o f e W a v Closed Na+ Channel Open K+ Channel 1 Local depolarization: generation of the end plate potential on the sarcolemma Na+ K+ 3 Sarcoplasm of muscle fiber Repolarization Figure 9.9

15 1 1 Axon terminal Open Na+ Channel Closed K+ Channel Synaptic cleft
Action potential + + + n + + Na+ K+ t i o z a r i o l a p d e o f v e W a 1 1 Local depolarization: generation of the end plate potential on the sarcolemma Sarcoplasm of muscle fiber Figure 9.9, step 1

16 2 1 1 Axon terminal Open Na+ Channel Closed K+ Channel Synaptic cleft
Action potential + + + o + + Na+ K+ t i z a r i 2 a Generation and propagation of the action potential (AP) o l p d e o f v e W a 1 1 Local depolarization: generation of the end plate potential on the sarcolemma Sarcoplasm of muscle fiber Figure 9.9, step 2

17 3 Closed Na+ Channel Open K+ Channel Na+ K+ Repolarization
Figure 9.9, step 3

18 2 1 3 Axon terminal Open Na+ Channel Closed K+ Channel Synaptic cleft
Action potential + + + + o n + + Na+ K+ t i z a Generation and propagation of the action potential (AP) 2 r i o l a p d e o f W a v e Closed Na+ Channel Open K+ Channel 1 Local depolarization: generation of the end plate potential on the sarcolemma Na+ K+ 3 Sarcoplasm of muscle fiber Repolarization Figure 9.9

19 Na+ channels close, K+ channels open Depolarization due to Na+ entry
Repolarization due to K+ exit Na+ channels open Threshold K+ channels close Figure 9.10

20 Excitation-Contraction (E-C) Coupling
Sequence of events by which transmission of an AP along the sarcolemma leads to sliding of the myofilaments AP is propagated along sarcomere to T tubules Voltage-sensitive proteins stimulate Ca2+ release from SR Ca2+ is necessary for contraction

21 Terminal cisterna of SR
Setting the stage Axon terminal of motor neuron Synaptic cleft Action potential is generated ACh Sarcolemma Terminal cisterna of SR Muscle fiber Ca2+ Triad One sarcomere Figure 9.11, step 1

22 Figure 9.11, step 2 Steps in E-C Coupling: The aftermath Sarcolemma
Voltage-sensitive tubule protein T tubule 1 Action potential is propagated along the sarcolemma and down the T tubules. Ca2+ release channel Calcium ions are released. 2 Terminal cisterna of SR Ca2+ Actin Troponin Tropomyosin blocking active sites Ca2+ Myosin 3 Calcium binds to troponin and removes the blocking action of tropomyosin. Active sites exposed and ready for myosin binding 4 Contraction begins Myosin cross bridge The aftermath Figure 9.11, step 2

23 1 Action potential is propagated along the sarcolemma and down
the T tubules. 1 Steps in E-C Coupling: Sarcolemma Voltage-sensitive tubule protein T tubule Ca2+ release channel Terminal cisterna of SR Ca2+ Figure 9.11, step 3

24 1 2 Action potential is propagated along the sarcolemma and down
the T tubules. 1 Steps in E-C Coupling: Sarcolemma Voltage-sensitive tubule protein T tubule Ca2+ release channel 2 Calcium ions are released. Terminal cisterna of SR Ca2+ Figure 9.11, step 4

25 Actin Troponin Tropomyosin blocking active sites Ca2+ Myosin
The aftermath Figure 9.11, step 5

26 3 Actin Troponin Tropomyosin blocking active sites Ca2+ Myosin
Calcium binds to troponin and removes the blocking action of tropomyosin. 3 Active sites exposed and ready for myosin binding The aftermath Figure 9.11, step 6

27 3 4 Actin Troponin Tropomyosin blocking active sites Ca2+ Myosin
Calcium binds to troponin and removes the blocking action of tropomyosin. 3 Active sites exposed and ready for myosin binding Contraction begins 4 Myosin cross bridge The aftermath Figure 9.11, step 7

28 Figure 9.11, step 8 Steps in E-C Coupling: The aftermath Sarcolemma
Voltage-sensitive tubule protein T tubule 1 Action potential is propagated along the sarcolemma and down the T tubules. Ca2+ release channel Calcium ions are released. 2 Terminal cisterna of SR Ca2+ Actin Troponin Tropomyosin blocking active sites Ca2+ Myosin 3 Calcium binds to troponin and removes the blocking action of tropomyosin. Active sites exposed and ready for myosin binding 4 Contraction begins Myosin cross bridge The aftermath Figure 9.11, step 8

29 Role of Calcium (Ca2+) in Contraction
At low intracellular Ca2+ concentration: Tropomyosin blocks the active sites on actin Myosin heads cannot attach to actin Muscle fiber relaxes

30 Role of Calcium (Ca2+) in Contraction
At higher intracellular Ca2+ concentrations: Ca2+ binds to troponin Troponin changes shape and moves tropomyosin away from active sites Events of the cross bridge cycle occur When nervous stimulation ceases, Ca2+ is pumped back into the SR and contraction ends

31 Cross Bridge Cycle Continues as long as the Ca2+ signal and adequate ATP are present Cross bridge formation—high-energy myosin head attaches to thin filament Working (power) stroke—myosin head pivots and pulls thin filament toward M line

32 Cross Bridge Cycle Cross bridge detachment—ATP attaches to myosin head and the cross bridge detaches “Cocking” of the myosin head—energy from hydrolysis of ATP cocks the myosin head into the high-energy state PLAY A&P Flix™: The Cross Bridge Cycle

33 Figure 9.12 Thin filament Actin Ca2+ Myosin cross bridge Thick
ADP Pi Thick filament Myosin 1 Cross bridge formation. ADP ADP Pi ATP hydrolysis Pi 4 Cocking of myosin head. 2 The power (working) stroke. ATP ATP 3 Cross bridge detachment. Figure 9.12

34 Cross bridge formation.
Actin Ca2+ Thin filament ADP Myosin cross bridge Pi Thick filament Myosin 1 Cross bridge formation. Figure 9.12, step 1

35 The power (working) stroke.
ADP Pi 2 The power (working) stroke. Figure 9.12, step 3

36 Cross bridge detachment.
ATP 3 Cross bridge detachment. Figure 9.12, step 4

37 ADP ATP hydrolysis Pi 4 Cocking of myosin head. Figure 9.12, step 5

38 Figure 9.12 Thin filament Actin Ca2+ Myosin cross bridge Thick
ADP Pi Thick filament Myosin 1 Cross bridge formation. ADP ADP Pi ATP hydrolysis Pi 4 Cocking of myosin head. 2 The power (working) stroke. ATP ATP 3 Cross bridge detachment. Figure 9.12

39

40 What is the major function of the sarcoplasmic reticulum?
Store sodium ions Expel sodium ions from the cell Expel calcium ions from the cell Store calcium ions Answer: d. Store calcium ions

41 During a muscle contraction, the sliding filament theory would be apparent in a sarcomere because __________. the I bands get longer the A bands get shorter the H zone becomes less obvious and the Z discs move closer together the Z discs get pulled closer to the I bands and the H zone becomes more obvious Answer: c. the H zone becomes less obvious and the Z-discs move closer together

42 At the neuromuscular junction, the muscle contraction initiation event is ______.
a release of calcium ions from the sarcoplasmic reticulum conduction of an electrical impulse down the T tubules binding of acetylcholine to membrane receptors on the sarcolemma sliding of actin and myosin filaments past each other Answer: c. binding of acetylcholine to membrane receptors on the sarcolemma

43 What is calcium’s function during muscle contraction?
Calcium binds to troponin, changing its shape and removing the blocking action of tropomyosin. Calcium binds to troponin to prevent myosin from attaching to actin. Calcium depolarizes the muscle fiber. Calcium flows down the T tubules to stimulate the influx of sodium from the sarcoplasmic reticulum. Answer: a. Calcium binds to troponin, changing its shape and removing the blocking action of tropomyosin.


Download ppt "9 Muscles and Muscle Tissue: Part B-Muscle Contraction and Signal Transmission."

Similar presentations


Ads by Google