Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 31. Synthetic Polymers

Similar presentations


Presentation on theme: "Chapter 31. Synthetic Polymers"— Presentation transcript:

1 Chapter 31. Synthetic Polymers
Based on McMurry’s Organic Chemistry, 6th edition ©2003 Ronald Kluger Department of Chemistry University of Toronto Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

2 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Polymers Large molecules built up by repetitive bonding together of monomers Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

3 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Drawing Polymers Indicate repeating unit in parentheses Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

4 31.1 Chain-Growth Polymers
Produced by chain-reaction polymerization Initiator (radical, acid or anion) adds to a carbon–carbon double bond of an unsaturated substrate (a vinyl monomer) to yield a reactive intermediate that reacts with a second molecule of monomer and so on Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

5 Anionic Polymerization
Vinyl monomers with electron-withdrawing substituents (EWG) can be polymerized by anionic catalysts Chain-carrying step is nucleophilic addition of an anion to the unsaturated monomer by a Michael reaction Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

6 Examples of Anionic Polymerization Products
Acrylonitrile (H2C=CHCN), methyl methacrylate [H2C=C(CH3)CO2CH3], and styrene (H2C=CHC6H5) react Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

7 31.2 Stereochemistry of Polymerization: Ziegler–Natta Catalysts
Polymerization of a substituted vinyl monomer can lead to numerous chirality centers on the chain A polymer having all methyl groups on the same side of the zigzag backbone is called isotactic If the methyl groups alternate on opposite sides of the backbone, it is called syndiotactic Randomly oriented methyl groups are on atactic polymers Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

8 Ziegler–Natta Catalysts
Allow preparation of isotactic, syndiotactic, and atactic polypropylene Prepared by treatment of an alkylaluminum with a titanium compound (CH3CH2)3Al + TiCl4  A Ziegler–Natta catalyst Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

9 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
31.3 Copolymers Obtained when two or more different monomers polymerize together They can be random or alternating Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

10 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Types of Copolymers The exact distribution of monomer units depends on the initial proportions of the two reactant monomers and their relative reactivities Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

11 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Block copolymers Different blocks of identical monomer units alternate with each other Prepared by initiating the polymerization of one monomer as if growing a homopolymer chain and then adding an excess of the second monomer to the still-active reaction mix Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

12 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Graft copolymers Homopolymer branches of one monomer unit are grafted onto a homopolymer chain of another monomer unit Made by gamma irradiation of a completed homopolymer chain in the presence of the second monomer generating radical sites that can initiate polymerization of the added monomer Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

13 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
31.4 Step-Growth Polymers Produced by reactions in which each bond in the polymer is formed independently, typically by reaction between two difunctional reactants Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

14 Step-Growth Polymer from a Lactam
Addition generates new nucleophile Polyamide from caprolactam is Nylon 6 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

15 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Polycarbonates Carbonyl group is linked to two OR groups, [O=C(OR)2] Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

16 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Polyurethanes Urethane - carbonyl carbon is bonded to both an OR group and an NR2 group Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

17 Preparation of Polyurethanes
Nucleophilic addition of an alcohol to an isocyanate (RN=C=O) gives a urethane Reaction between a diol and a diisocyanate gives a polyurethane Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

18 31.5 Polymer Structure and Physical Properties
Polymers experience substantially larger van der Waals forces than do small molecules, producing regions that are crystallites Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

19 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Heat Transitions Heating at the melt transition temperature, Tm, gives an amorphous material Heating noncrystalline, amorphous polymers makes the hard amorphous material soft and flexible at the glass transition temperature, Tg Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

20 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Thermoplastics Have a high Tg and are hard at room temperature Become soft and viscous when heated Can be molded Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

21 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Plasticizers Small organic molecules that act as lubricants between chains Added to thermoplastics to keep them from becoming brittle at room temperature Dialkyl phthalates are commonly used for this purpose Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

22 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Fibers Thin threads produced by extruding a molten polymer through small holes in a die, or spinneret Fibers are then cooled and drawn out Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

23 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Elastomers Amorphous polymers that have the ability to stretch out and spring back to their original shapes When stretched, the randomly coiled chains straighten out and orient along the direction of the pull Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

24 Natural Rubber and Gutta-Percha
The upper structure is rubber, a natural elastomer The lower structure is the nonelastic gutta-percha Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003

25 Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003
Thermosetting resins Polymers that become highly cross-linked and solidify into a hard, insoluble mass when heated Bakelite is from reaction of phenol and formaldehyde, widely used for molded parts, adhesives, coatings Based on McMurry, Organic Chemistry, Chapter 31, 6th edition, (c) 2003


Download ppt "Chapter 31. Synthetic Polymers"

Similar presentations


Ads by Google