Presentation is loading. Please wait.

Presentation is loading. Please wait.

Computer and Robot Vision II

Similar presentations


Presentation on theme: "Computer and Robot Vision II"— Presentation transcript:

1 Computer and Robot Vision II
Chapter 15 Motion and Surface Structure from Time Varying Image Sequences Presented by: 傅楸善 & 王林農 指導教授: 傅楸善 博士

2 15.1 Introduction Motion analysis involves estimating the relative motion of objects with respect to each other and the camera given two or more perspective projection images in a time sequence. DC & CV Lab. CSIE NTU

3 15.1 Introduction (cont’) Real-world applications:
industrial automation and inspection, robot assembly, autonomous vehicle navigation, biomedical engineering, remote sensing, general 3D-scene understanding DC & CV Lab. CSIE NTU

4 15.1 Introduction (cont’) object motion and surface structure recovery from: observed optic flow point correspondences DC & CV Lab. CSIE NTU

5 15.2 The Fundamental Optic Flow Equation
(x, y, z): 3D point on moving rigid body (u, v): perspective projection on the image plane f: camera constant (u, v): velocity of the point (u, v) . . DC & CV Lab. CSIE NTU

6 15.2 The Fundamental Optic Flow Equation (cont’)
take time derivatives of both sides yields the fundamental optic flow equation: . . . . . . . . . . . DC & CV Lab. CSIE NTU

7 15.2 The Fundamental Optic Flow Equation (cont’)
general solution: (λ is a free variable) . . . . . DC & CV Lab. CSIE NTU

8 15.2.1 Translational Motion . . . . . Known: Unknown:
N-point optic flow field: Unknown: corresponding unknown 3D points: all points moving with same but unknown velocity (x, y, z) can be solved up to a multiplicative constant . . . . . DC & CV Lab. CSIE NTU

9 15.2.2 Focus of Expansion and Contraction
Known: 3D motion is translational one 2D projected point (u, v) has no motion: thus translational motion is in a direction along the ray of sight . . DC & CV Lab. CSIE NTU

10 15.2.2 Focus of Expansion and Contraction (cont’)
focus of expansion (FOE): if 3D point field moving toward camera FOE: motion-field vectors radiate outward from that point focus of contraction (FOC): if 3D point field moving away from camera FOC: vectors radiate inward toward diametrically opposite point flow pattern of the motion field of a forward-moving observer DC & CV Lab. CSIE NTU

11 DC & CV Lab. CSIE NTU

12 15.2.3 Moving Line Segment . . . Known:
fixed distance between two unknown 3D points translational motion with common velocity (x, y, z) corresponding optic flow: . . . DC & CV Lab. CSIE NTU

13 15.2.3 Moving Line Segment (cont’)
Unknown: : two unknown 3D points common velocity: (x, y, z) . . . DC & CV Lab. CSIE NTU

14 15.2.3 Moving Line Segment (cont’)
From the perspective projection equations: From the optic flow equation: DC & CV Lab. CSIE NTU

15 15.2.3 Moving Line Segment (cont’)
From the known length of the line segment: The optic flow equation (15.9) permits us to obtain a least squares solution for z in terms of z1 and z2, from DC & CV Lab. CSIE NTU

16 15.2.3 Moving Line Segment (cont’)
We obtain Substituting this back into the equation, we can solve z2 in terms of z1:z2=kz1 DC & CV Lab. CSIE NTU

17 15.2.3 Moving Line Segment (cont’)
Substitute the relations for (x1, y1, z1) from equations into Eq.(15.10) to obtain Hence: DC & CV Lab. CSIE NTU

18 15.2.4 Optic Flow Acceleration Invariant
Since differentiating general solution in Sec 15.2 and solve for (x, y, z) .. .. .. . .. .. . .. . .. .. .. DC & CV Lab. CSIE NTU

19 joke DC & CV Lab. CSIE NTU

20 15.3 Rigid-Body Motion Rigid-body motion: no relative motion of points w.r.t. (with respect to) one another Rigid-body motion: points maintain fixed position relative to one another Rigid-body motion: all points move with the body as a whole DC & CV Lab. CSIE NTU

21 15.3 Rigid-Body Motion (cont’)
R(t): rotation matrix T(t): translation vector p(0): initial position of given point R(0)=I, T(0)=0 p(t): position of given point at time t DC & CV Lab. CSIE NTU

22 15.3 Rigid-Body Motion (cont’)
Rigid-body motion in displacement vectors: velocity vector: time derivative of its position: . . . DC & CV Lab. CSIE NTU

23 15.3 Rigid-Body Motion (cont’)
Since (a) translational-motion field under projection onto hemispherical surface only translational-component motion useful in determining scene structure (b) rotational-motion field under projection onto hemispherical surface rotational-motion field provides no information about scene structure . . . DC & CV Lab. CSIE NTU

24 15.3 Rigid-Body Motion (cont’)
DC & CV Lab. CSIE NTU

25 15.3 Rigid-Body Motion (cont’)
we can describe rigid-body motion in instantaneous velocity by . DC & CV Lab. CSIE NTU

26 15.3 Rigid-Body Motion (cont’)
: angular velocities in three axes : translational velocities in three axes from rigid-body-motion equation . . . DC & CV Lab. CSIE NTU

27 15.3 Rigid-Body Motion (cont’)
and perspective projection equation we can determine an expression for z: . . DC & CV Lab. CSIE NTU

28 15.3 Rigid-Body Motion (cont’)
after simplification . . DC & CV Lab. CSIE NTU

29 15.3 Rigid-Body Motion (cont’)
image velocity: expressed as sum of translational field and rotational field (x, y, z): 3D coordinate before rigid-body motion in displacement vectors (x’, y’, z’): 3D coordinate after rigid-body motion in displacement vectors : rotation angles in three axes : translation in three axes DC & CV Lab. CSIE NTU

30 15.3 Rigid-Body Motion (cont’)
Rigid-body motion in displacement vectors: DC & CV Lab. CSIE NTU

31 15.3 Rigid-Body Motion (cont’)
motion in displacement vector and instantaneous velocity is different: e.g. moon encircling earth instantaneous velocity: first order approximation of displacement vector first order approximation: when small, DC & CV Lab. CSIE NTU

32 15.3 Rigid-Body Motion (cont’)
first order approximation: when time=1 thus x=(x’ - x)/1 first order approximation: . DC & CV Lab. CSIE NTU

33 joke DC & CV Lab. CSIE NTU

34 15.4 Linear Algorithms for Motion and Surface Structure from Optic Flow
The Planar Patch Case : arbitrary object point on planar patch at time t : central projective coordinates of p(t) onto image plane z= f DC & CV Lab. CSIE NTU

35 The Planar Patch Case . . : instantaneous velocity of moving image point : optic flow image point : instantaneous rotational angular velocity : instantaneous translational velocity . . DC & CV Lab. CSIE NTU

36 15.4.1 The Planar Patch Case (cont’)
unit vector n(t): orthogonal to moving planar patch rigid planar patch motion represented by rigid-motion constraint: . DC & CV Lab. CSIE NTU

37 15.4.1 The Planar Patch Case (cont’)
from above two equations: Let Rigid-motion constraint could be written as DC & CV Lab. CSIE NTU

38 15.4.1 The Planar Patch Case (cont’)
denote the 3 x 3 matrix by W and its three row vectors by W: called planar motion parameter matrix since skew symmetric DC & CV Lab. CSIE NTU

39 15.4.1 The Planar Patch Case (cont’)
above equation can be written as from perspective projection equations: taking time derivatives of these equations we have . . . . . . . . . DC & CV Lab. CSIE NTU

40 15.4.1 The Planar Patch Case (cont’)
substitute equations into above equations: from third row substitute z to obtain optical flow-planar motion equation . . . . . . . . . DC & CV Lab. CSIE NTU

41 15.4.1 The Planar Patch Case (cont’)
we have 2N linear equations: n=1,…,N: optic flow-planar motion recovery: first solve W then find . . DC & CV Lab. CSIE NTU

42 15.4.2 General Case Optic Flow-Motion Equation
1. set up optic flow-motion equation not involving depth information 2. solve it by using linear least-squares technique DC & CV Lab. CSIE NTU

43 15.4.3 A Linear Algorithm for Solving Optic FlowMotion Equations
DC & CV Lab. CSIE NTU

44 15.5.4 Mode of Motion, Direction of Translation, and Surface Structure
mode of motion: whether translation k=0 or not direction of translation: direction of k surface structure: relative depth when k 0 DC & CV Lab. CSIE NTU

45 15.4.5 Linear Optic Flow-Motion Algorithm and Simulation Results
motion and shape recovery algorithms should answer three questions: minimum number of points to compute motion and shape what set of optic flow points violate rank assumption e.g. collinearity… What’s the accuracy of estimated motion from noisy optic flow? DC & CV Lab. CSIE NTU

46 joke DC & CV Lab. CSIE NTU

47 15.5 The Two View-Linear Motion Algorithm
DC & CV Lab. CSIE NTU

48 15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review
Two View-Planar Motion Equation imaging geometry for two view-planar motion rigid planar patch in motion in half-space z< 0 DC & CV Lab. CSIE NTU

49 DC & CV Lab. CSIE NTU

50 15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)
: arbitrary object point before motion : same object point after motion : central projective coordinates of f : camera constant DC & CV Lab. CSIE NTU

51 15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)
R0: 3 X 3 rotational matrix, R0’R0=I,|R0|=1 t0: 3 X 1 translational vector n0: 3 X 1 normal vector DC & CV Lab. CSIE NTU

52 15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)
Rigid-body-motion equation relates p1 to p2 as follows: planarity constrains p1 by combining two equations produces planar rigid-body-motion-equation DC & CV Lab. CSIE NTU

53 15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)
Projecting the planar rigid-body motion onto the image plane z = f produces Let the planar rigid –motion parameter matrix be defined by Where bi, i=1,2,3, are three row vectors of B. DC & CV Lab. CSIE NTU

54 15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)
Then above equation could be written as DC & CV Lab. CSIE NTU

55 15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)
From above we derive the two view-planar motion equation With the natural constraint DC & CV Lab. CSIE NTU

56 15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)
Now the planar motion recovery problem involves first solving the planar rigid-motion parameter matrix B and then estimating DC & CV Lab. CSIE NTU

57 15.5.2 General Curved Patch Motion Recovery from Two Perspective Views A Simplified Linear Algorithm
discard planar patch assumption, consider general curved patch DC & CV Lab. CSIE NTU

58 15.5.3 Determining Translational Orientation
DC & CV Lab. CSIE NTU

59 15.5.4 Determining Mode of Motion and Relative Depths
DC & CV Lab. CSIE NTU

60 15.5.5 A Simplified Two View-Motion Linear Algorithm
DC & CV Lab. CSIE NTU

61 15.5.6 Discussion and Summary
when no noise appears: algorithm extremely accurate when small noise appears: it works well except mode of motion incorrect DC & CV Lab. CSIE NTU

62 15.6 Linear Algorithm for Motion and Structure from Three Orthographic Views
Ullman (1979) showed that for the orthographic case four-point correspondences over three views are sufficient to determine the motion and structure of the four-point rigid configuration DC & CV Lab. CSIE NTU

63 Shimon Ullman, The Interpretation of Visual Motion
The MIT Press, Cambridge MA. 1979 DC & CV Lab. CSIE NTU

64 15.6 Linear Algorithm for Motion and Structure from Three Orthographic Views
to infer depth information: translation needed in perspective projection to infer depth information: rotation useless in perspective projection to infer depth information: rotation needed in orthographic projection to infer depth information translation useless in orthographic projection DC & CV Lab. CSIE NTU

65 DC & CV Lab. CSIE NTU

66 Problem Formulation image plane stationary three orthographic views at time (x, y, z): object-space coordinates of point P at t1 (x’, y’, z’): object-space coordinates of point P at t2 (x”, y”, z”): object-space coordinates of point P at t3 (u, v): image-space coordinates of P at t1 (u’, v’): image-space coordinates of P at t2 (u”, v”): image-space coordinates of P at t3 DC & CV Lab. CSIE NTU

67 15.6.1 Problem Formulation (cont’)
: rotation matrix : translation vector (x’, y’, z’)’ = R(x’, y’, z’)+Tr (x”, y”, z”)” = S(x”, y”, z”)+Ts DC & CV Lab. CSIE NTU

68 15.6.1 Problem Formulation (cont’)
Known: four image-point correspondences Unkown: DC & CV Lab. CSIE NTU

69 15.6.1 Problem Formulation (cont’)
note that with orthographic projections therefore it is obvious that tr3, ts3 can never be determined we are trying to determine: DC & CV Lab. CSIE NTU

70 Determining DC & CV Lab. CSIE NTU

71 15.6.3 Solving a Unique Orthonormal Matrix R
DC & CV Lab. CSIE NTU

72 15.6.4 Linear Algorithm to Uniquely Solve R, s, a3
DC & CV Lab. CSIE NTU

73 Summary Given two orthographic views, one cannot finitely determine the motion and structure of a rigid body, no matter how many point correspondences are used, as shown by Huang. DC & CV Lab. CSIE NTU

74 Joke DC & CV Lab. CSIE NTU

75 15.7 Developing a Highly Robust Estimator for General Regression
DC & CV Lab. CSIE NTU

76 15.7.1 Inability of the Classical Robust M-Estimator to Render High Robustness
Classical robust estimator, such as M-, L-, or R-estimator: 1. optimal or nearly optimal at assumed noise distribution 2. relatively small performance degradation with small number of outliers 3. larger deviations from assumed distribution do not cause catastrophe MF-estimator with new property much stronger than property 3 relatively small performance degradation with larger deviations from assumed distribution DC & CV Lab. CSIE NTU

77 15.7.2 Partially Modeling Log Likelihood Function by Using Heuristics
MF-estimator: robust regression more appropriate model-fitting DC & CV Lab. CSIE NTU

78 15.7.3 Discussion M-, L-, R and MF-estimator: all residual based
DC & CV Lab. CSIE NTU

79 MF-Estimator MF-estimator: combine Bayes statistical decision rule with heuristics DC & CV Lab. CSIE NTU

80 15.8 Optic Flow-Instantaneous Rigid-Motion Segmentation and Estimation
formulate optic flow-single rigid-motion estimation into general regression DC & CV Lab. CSIE NTU

81 Single Rigid Motion P(t): position vector of an object point at the time t [X(t), Y(t)]: central projective coordinate of P(t) DC & CV Lab. CSIE NTU

82 15.8.1 Single Rigid Motion (cont’)
DC & CV Lab. CSIE NTU

83 15.8.1 Single Rigid Motion (cont’)
: noisy optic flow image point Instantaneous representation of the rigid motion is described by Instantaneous rotational angular velocity of rigid motion: Instantaneous translational angular velocity of rigid motion: DC & CV Lab. CSIE NTU

84 15.8.1 Single Rigid Motion (cont’)
Differentiating above equation where for simplicity the time variable t has been omitted DC & CV Lab. CSIE NTU

85 15.8.1 Single Rigid Motion (cont’)
Combine above two equations: DC & CV Lab. CSIE NTU

86 15.8.2 Multiple Rigid Motions
We turn the optic flow-multiple rigid –motion segmentation and estimation problem into a number of successive optic flow-single rigid-motion estimation problems. DC & CV Lab. CSIE NTU

87 joke DC & CV Lab. CSIE NTU

88 15.9 Experimental Protocol
Simulate simplest location estimation Simulate Optic flow-rigid-motion segmentation and estimation DC & CV Lab. CSIE NTU

89 15.9 Experimental Protocol (cont’)
DC & CV Lab. CSIE NTU

90 15.9 Experimental Protocol (cont’)
DC & CV Lab. CSIE NTU

91 15.9 Experimental Protocol (cont’)
DC & CV Lab. CSIE NTU

92 15.10 Motion and Surface Structure from Line Correspondences
Discussion concerns only the general rigid motion of straight-line structure DC & CV Lab. CSIE NTU

93 Problem Formulation Cartesian reference system-central projection DC & CV Lab. CSIE NTU

94 15.10.1 Problem Formulation (cont’)
DC & CV Lab. CSIE NTU

95 15.10.1 Problem Formulation (cont’)
l: line in 3D space L: projection of the line on image plane z = f z = f : image frame : known plane line L is in; projective plane of l : set of lines in 3D space : lines moved by rigid motion (R’ , T’)’ at time t’ (R” , T”)” at time t” DC & CV Lab. CSIE NTU

96 15.10.1 Problem Formulation (cont’)
: projections of lines ; respective projective planes DC & CV Lab. CSIE NTU

97 15.10.1 Problem Formulation (cont’)
Known: K triples of line correspondences in three views Unkown: rotations and translations: 3D lines DC & CV Lab. CSIE NTU

98 15.10.2 Solving Rotation Matrices R’, R” and Translations T’,R”
: the normals of the ith projective planes Then DC & CV Lab. CSIE NTU

99 15.10.2 Solving Rotation Matrices R’, R” and Translations T’,R”
Above two equations define a unique three-dimensional line solution if and only if DC & CV Lab. CSIE NTU

100 15.10.3 Solving Three-Dimensional Line Structure
Once rotation martrices R’, R” and translations T’, T” are solved, each three-dimensional line li can be determined DC & CV Lab. CSIE NTU

101 15.11 Multiple Rigid Motions from Two Perspective Views
Problem Statement imaging geometry for two-view-motion DC & CV Lab. CSIE NTU

102 DC & CV Lab. CSIE NTU

103 Problem Statement How many good point correspondences are needed in order to apply the nonlinear least-squares estimator? DC & CV Lab. CSIE NTU

104 15.11.2 Simulated Experiments
DC & CV Lab. CSIE NTU

105 15.11.2 Simulated Experiments (cont’)
DC & CV Lab. CSIE NTU

106 15.11.2 Simulated Experiments (cont’)
DC & CV Lab. CSIE NTU

107 15.12 Rigid Motion from Three Orthographic Views
DC & CV Lab. CSIE NTU

108 15.12.1 Problem Formulation and Algorithm
same as Sec. 15.6, instead of linear algorithms, formulate model-fitting problem DC & CV Lab. CSIE NTU

109 15.12.2 Simulated Experiments
DC & CV Lab. CSIE NTU

110 15.12.2 Simulated Experiments (cont’)
DC & CV Lab. CSIE NTU

111 15.12.2 Simulated Experiments (cont’)
DC & CV Lab. CSIE NTU

112 15.12.3 Further Research on the MF-Estimator
two problems to be solved for MF-estimator to be practically useful: distance problem requirement for a good initial approximation DC & CV Lab. CSIE NTU

113 difficulty of motion and shape recovery: ambiguity of displacement field
Fuh. Ph.D. Thesis, Fig 4.1 DC & CV Lab. CSIE NTU

114 DC & CV Lab. CSIE NTU

115 15.13 Literature Review 15.13.1 Inferring Motion and Surface Structure
DC & CV Lab. CSIE NTU

116 15.13.1 Inferring Motion and Surface Structure
classifications for methods of inferring 3D motion and shape use of individual sets of feature points use of local optic flow information about a single point use of the entire optic flow field DC & CV Lab. CSIE NTU

117 15.13.1 Inferring Motion and Surface Structure
Despite all the results obtained over the years, almost none of these inference techniques have been successfully applied to feature-point correspondences calculated from real imagery DC & CV Lab. CSIE NTU

118 Joke DC & CV Lab. CSIE NTU

119 15.13.2 Computing Optic Flow or Image-Point Correspondences
problem source contains abundant information occlusion boundaries specular points near a focus of expansion noise and digitization effects in image formation DC & CV Lab. CSIE NTU

120 15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)
motion parallax: apparent relative motion between objects and observer points in observer’s direction of translation remain relatively unchanged information available to a moving observer DC & CV Lab. CSIE NTU

121 DC & CV Lab. CSIE NTU

122 15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)
impart time dimension to image data spatiotemporal image data block DC & CV Lab. CSIE NTU

123 DC & CV Lab. CSIE NTU

124 15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)
motion field: assignment of vectors to image points representing motion angular velocity of fixed scene: inversely proportional to distance pilot in straight-ahead level flight on an overcast day DC & CV Lab. CSIE NTU

125 DC & CV Lab. CSIE NTU

126 DC & CV Lab. CSIE NTU

127 15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)
motion field of pilot looking straight ahead in motion direction zero image velocity: at approach point and at infinity (along horizon) DC & CV Lab. CSIE NTU

128 DC & CV Lab. CSIE NTU

129 15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)
motion field of pilot looking to the right in level flight focus of expansion here: at infinity to the left focus of contraction here: at infinity to the right of the figure DC & CV Lab. CSIE NTU

130 DC & CV Lab. CSIE NTU

131 15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)
spatiotemporal image data acquired by a camera,- caption - straight streaks at block top due to translating parallel to image plane DC & CV Lab. CSIE NTU

132 DC & CV Lab. CSIE NTU

133 joke DC & CV Lab. CSIE NTU

134 B.K.P. Horn, Robot Vision, The MIT Press, Cambridge, MA, 1986
Chapter 12 Motion Field & Optical Flow optic flow: apparent motion of brightness patterns during relative motion DC & CV Lab. CSIE NTU

135 12.1 Motion Field motion field: assigns velocity vector to each point in the image Po: some point on the surface of an object Pi: corresponding point in the image vo: object point velocity relative to camera vi: motion in corresponding image point DC & CV Lab. CSIE NTU

136 12.1 Motion Field (cont’) ri: distance between perspectivity center and image point ro: distance between perspectivity center and object point f’: camera constant z: depth axis, optic axis object point displacement causes corresponding image point displacement DC & CV Lab. CSIE NTU

137 12.1 Motion Field (cont’) DC & CV Lab. CSIE NTU

138 12.1 Motion Field (cont’) Velocities: where ro and ri are related by
DC & CV Lab. CSIE NTU

139 12.1 Motion Field (cont’) differentiation of this perspective projection equation yields DC & CV Lab. CSIE NTU

140 joke DC & CV Lab. CSIE NTU

141 12.2 Optical Flow optical flow need not always correspond to the motion field (a) perfectly uniform sphere rotating under constant illumination: no optical flow, yet nonzero motion field (b) fixed sphere illuminated by moving light source: nonzero optical flow, yet zero motion field DC & CV Lab. CSIE NTU

142 DC & CV Lab. CSIE NTU

143 12.2 Optical Flow (cont’) not easy to decide which P’ on contour C’ corresponds to P on C DC & CV Lab. CSIE NTU

144 DC & CV Lab. CSIE NTU

145 12.2 Optical Flow (cont’) optical flow: not uniquely determined by local information in changing irradiance at time t at image point (x, y) components of optical flow vector DC & CV Lab. CSIE NTU

146 12.2 Optical Flow (cont’) assumption: irradiance the same at time
fact: motion field continuous almost everywhere DC & CV Lab. CSIE NTU

147 12.2 Optical Flow (cont’) expand above equation in Taylor series
e: second- and higher-order terms in cancelling E( x, y, t), dividing through by DC & CV Lab. CSIE NTU

148 12.2 Optical Flow (cont’) which is actually just the expansion of the equation abbreviations: DC & CV Lab. CSIE NTU

149 12.2 Optical Flow (cont’) we obtain optical flow constraint equation:
flow velocity (u, v): lies along straight line perpendicular to intensity gradient DC & CV Lab. CSIE NTU

150 DC & CV Lab. CSIE NTU

151 12.2 Optical Flow (cont’) rewrite constraint equation:
aperture problem: cannot determine optical flow along isobrightness contour DC & CV Lab. CSIE NTU

152 12.3 Smoothness of the Optical Flow
motion field: usually varies smoothly in most parts of image try to minimize a measure of departure from smoothness DC & CV Lab. CSIE NTU

153 12.3 Smoothness of the Optical Flow (cont’)
error in optical flow constraint equation should be small overall, to minimize DC & CV Lab. CSIE NTU

154 12.3 Smoothness of the Optical Flow (cont’)
large if brightness measurements are accurate small if brightness measurements are noisy DC & CV Lab. CSIE NTU

155 12.4 Filling in Optical Flow Information
regions of uniform brightness: optical flow velocity cannot be found locally brightness corners: reliable information is available DC & CV Lab. CSIE NTU

156 12.5 Boundary Conditions Well-posed problem: solution exists and is unique partial differential equation: infinite number of solution unless with boundary DC & CV Lab. CSIE NTU

157 joke DC & CV Lab. CSIE NTU

158 12.6 The Discrete Case first partial derivatives of u, v: can be estimated using difference DC & CV Lab. CSIE NTU

159 DC & CV Lab. CSIE NTU

160 12.6 The Discrete Case (cont’)
measure of departure from smoothness: error in optical flow constraint equation: to seek set of values that minimize DC & CV Lab. CSIE NTU

161 12.6 The Discrete Case (cont’)
dieffrentiating e with respect to DC & CV Lab. CSIE NTU

162 12.6 The Discrete Case (cont’)
where are local average of u, v (9 neighbors? ) extremum occurs where the above derivatives of e are zero: DC & CV Lab. CSIE NTU

163 12.6 The Discrete Case (cont’)
determinant of 2x2 coefficient matrix: so that DC & CV Lab. CSIE NTU

164 12.6 The Discrete Case (cont’)
suggests iterative scheme such as new value of (u, v): average of surrounding values minus adjustment DC & CV Lab. CSIE NTU

165 DC & CV Lab. CSIE NTU

166 12.6 The Discrete Case (cont’)
first derivatives estimated using first differences in 2x2x2 cube DC & CV Lab. CSIE NTU

167 DC & CV Lab. CSIE NTU

168 12.6 The Discrete Case (cont’)
consistent estimates of three first partial derivatives: DC & CV Lab. CSIE NTU

169 12.6 The Discrete Case (cont’)
four successive synthetic images of rotating sphere DC & CV Lab. CSIE NTU

170 DC & CV Lab. CSIE NTU

171 12.6 The Discrete Case (cont’)
estimated optical flow after 1, 4, 16, and 64 iterations DC & CV Lab. CSIE NTU

172 DC & CV Lab. CSIE NTU

173 12.6 The Discrete Case (cont’)
(a) estimated optical flow after several more iterations (b) computed motion field DC & CV Lab. CSIE NTU

174 DC & CV Lab. CSIE NTU

175 12.7 Discontinuities in Optical Flow
discontinuities in optical flow: on silhouettes where occlusion occurs DC & CV Lab. CSIE NTU

176 Joke DC & CV Lab. CSIE NTU

177 Project due May 2 implementing Horn & Schunck optical flow estimation as above synthetically translate lena.im one pixel to the right and downward Try DC & CV Lab. CSIE NTU


Download ppt "Computer and Robot Vision II"

Similar presentations


Ads by Google