Presentation is loading. Please wait.

Presentation is loading. Please wait.

Complex Numbers 12 Learning Outcomes

Similar presentations


Presentation on theme: "Complex Numbers 12 Learning Outcomes"โ€” Presentation transcript:

1 Complex Numbers 12 Learning Outcomes
In this chapter you have learned how to: Plot complex numbers on the Argand diagram Find the modulus of a complex number and calculate the complex conjugate Add, subtract, multiply and divide complex numbers Use complex numbers to perform transformations Solve equations with complex roots and use the Conjugate Root Theorem Write complex numbers in polar form Prove de Moivreโ€™s Theorem Use de Moivreโ€™s Theorem to evaluate (a + bi)n, a, b โˆˆ R, n โˆˆ Z Use de Moivreโ€™s Theorem to find the roots of complex numbers

2 12 Complex Numbers Definition
A Complex Number z is a number of the form ๐‘ง=๐‘Ž+๐‘๐‘–, ๐‘Ž, ๐‘โˆˆ๐‘…, ๐‘– 2 =โˆ’1. a is called the real part of z, Re z . b is called the imaginary part of z, Im z . Examples: 2+3๐‘–, 5โˆ’2๐‘–, ๐‘–, 2 โˆ’3๐‘– Note: The complex numbers ๐‘ง 1 =๐‘Ž+๐‘๐‘– and ๐‘ง 2 =๐‘+๐‘‘๐‘– are equal if ๐‘Ž=๐‘ and ๐‘=๐‘‘. Simplify ๐’Š ๐Ÿ’ . ๐‘– 4 =( ๐‘– 2 ) 2 =(โˆ’1 ) 2 =1 ๐‘–=๐‘– ๐‘– 2 =โˆ’1 ๐‘– 3 =โˆ’๐‘– ๐‘– 4 =1 ๐‘– 5 =๐‘– ๐‘– 6 =โˆ’1 ๐‘– 7 =โˆ’๐‘– ๐‘– 8 =1 ๐‘– 9 =๐‘– Solve the equation ๐’› ๐Ÿ +๐Ÿ‘๐Ÿ”=๐ŸŽ. ๐‘ง 2 +36=0 ๐‘ง 2 =โˆ’36 ๐‘ง=ยฑ โˆ’36 ๐‘ง=ยฑ โˆ’1 ๐‘ง=ยฑ6๐‘– Note the repeating pattern.

3 12 Complex Numbers The Argand Diagram
A complex number can be represented on a diagram called the Argand diagram. Here are the complex numbers ๐‘ง 1 =3+2๐‘–, ๐‘ง 2 =4โˆ’3๐‘– and ๐‘ง 3 =โˆ’2โˆ’5๐‘– represented on an Argand diagram. -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 Re Im ๐‘ง 1 =3+2๐‘– ๐‘ง 2 =4โˆ’3๐‘– ๐‘ง 3 =โˆ’2โˆ’5๐‘– Modulus of a Complex Number Definition The modulus of a complex number, ๐‘Ž+๐‘๐‘–, is its distance from the origin. The modulus of ๐‘Ž+๐‘๐‘– is written |๐‘Ž+๐‘๐‘–|. |๐’‚+๐’ƒ๐’Š|= ๐’‚ ๐Ÿ + ๐’ƒ ๐Ÿ If ๐’› ๐Ÿ =๐Ÿ•+๐Ÿ๐Ÿ’๐’Š find | ๐’› ๐Ÿ |. ๐‘ง 1 = 7+24๐‘– = = = 625 =25

4 Addition, Subtraction, Multiplication and Division of Complex Numbers
12 Complex Numbers Addition, Subtraction, Multiplication and Division of Complex Numbers Addition ๐ˆ๐Ÿ ๐’› ๐Ÿ =๐Ÿโˆ’๐Ÿ‘๐’Š ๐š๐ง๐ ๐’› ๐Ÿ =๐Ÿ๐Ÿ+๐Ÿ“๐’Š evaluate ๐’› ๐Ÿ + ๐’› ๐Ÿ . ๐‘ง 1 + ๐‘ง 2 = 2โˆ’3๐‘– +(11+5๐‘–) =2โˆ’3๐‘–+11+5๐‘– Add the real parts to the real parts and the imaginary parts to the imaginary parts. ๐‘ง 1 + ๐‘ง 2 =13+2๐‘– Subtraction ๐ˆ๐Ÿ ๐’› ๐Ÿ =๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ”๐’Š ๐š๐ง๐ ๐’› ๐Ÿ =๐Ÿ๐Ÿ’โˆ’๐Ÿ๐’Š evaluate ๐’› ๐Ÿ โˆ’ ๐’› ๐Ÿ . ๐‘ง 1 โˆ’ ๐‘ง 2 = 18+16๐‘– โˆ’(14โˆ’2๐‘–) =18+16๐‘–โˆ’14+2๐‘– Add the real parts to the real parts and the imaginary parts to the imaginary parts. ๐‘ง 1 โˆ’ ๐‘ง 2 =4+18๐‘–

5 12 Complex Numbers Multiplication
๐ˆ๐Ÿ ๐’› ๐Ÿ =๐Ÿโˆ’๐Ÿ•๐’Š ๐š๐ง๐ ๐’› ๐Ÿ =๐Ÿ‘+๐Ÿ•๐’Š evaluate ๐’› ๐Ÿ ๐’› ๐Ÿ . ๐‘ง 1 ๐‘ง 2 =(2โˆ’7๐‘–)(3+7๐‘–) =2(3+7๐‘–)โˆ’7๐‘–(3+7๐‘–) =6+14๐‘–โˆ’21๐‘–โˆ’49 ๐‘– 2 =6+14๐‘–โˆ’21๐‘–โˆ’49(โˆ’1) =6+14๐‘–โˆ’21๐‘–+49 =55โˆ’7๐‘– Conjugate of a Complex Number Definition If ๐‘ง=๐‘Ž+๐‘๐‘–, then the ๐œ๐จ๐ง๐ฃ๐ฎ๐ ๐š๐ญ๐ž of ๐‘ง written as ๐‘ง =๐‘Žโˆ’๐‘๐‘–. Rule: Change the sign of the imaginary part. Example: If ๐‘ง=โˆ’2โˆ’12๐‘–, then ๐‘ง =โˆ’2+12๐‘–.

6 12 Complex Numbers ๐Ÿ+๐Ÿ๐Ÿ๐’Š ๐Ÿ+๐’Š . Division Calculate
๐Ÿ+๐Ÿ๐Ÿ๐’Š ๐Ÿ+๐’Š . Note: When dividing by a complex number multiply the numerator and the denominator by the conjugate of the denominator. Step 1 Write down the conjugate of the denominator: 2+๐‘– =2โˆ’๐‘– Step 2 Multiply the denominator 2+๐‘– by 2โˆ’๐‘–. 2+๐‘– 2โˆ’๐‘– =2 2โˆ’๐‘– +๐‘–(2โˆ’๐‘–) =4โˆ’2๐‘–+2๐‘–โˆ’ ๐‘– 2 =5 Step 3 Multiply the numerator by 2โˆ’๐‘–. 2+11๐‘– 2โˆ’๐‘– =2 2โˆ’๐‘– +11๐‘–(2โˆ’๐‘–) =4โˆ’2๐‘–+22๐‘–โˆ’11 ๐‘– 2 =4+20๐‘–+11 Step 4 2+11๐‘– 2+๐‘– = 15+20๐‘– 5 =15+20๐‘– =3+4๐‘–

7 12 Complex Numbers Transformations
The addition of complex numbers is the equivalent of a translation on the complex plane. If ๐’› ๐Ÿ =๐Ÿ+๐Ÿ’๐’Š and ๐Ž=๐Ÿ+๐’Š plot ๐’› ๐Ÿ + ๐Ž on an Argand diagram. Describe the transformation that maps the addition of ๐’› ๐Ÿ to ๐’› ๐Ÿ +๐Ž. The multiplication of a complex number by ๐’Š is the equivalent of rotating the complex number anti-clockwise through ๐Ÿ—๐ŸŽ ยฐ about the origin. ๐ˆ๐Ÿ ๐’› ๐Ÿ =๐Ÿ+๐’Š ๐š๐ง๐ ๐Ž=๐’Š(๐Ÿ+๐’Š) describe the transformation that maps ๐’› ๐Ÿ to ๐Ž. -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 Re Im ๐‘ง 1 +๐œ”=3+5๐‘– ๐‘ง 1 =2+4๐‘– -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 Re Im ๐œ”=1+๐‘– ๐œ”=โˆ’1+2๐‘– ๐‘ง 1 =2+๐‘– ๐‘ง 1 โ†’๐‘ง 1 + ๐œ” is a translation. ๐‘ง 1 โ†’ ๐œ” is a+90ยฐ rotation.

8 Quadratic Equations with Complex Roots
12 Complex Numbers Quadratic Equations with Complex Roots ๐‘Ž ๐‘ฅ 2 +๐‘๐‘ฅ+๐‘=0, ๐‘Ž, ๐‘, ๐‘โˆˆ๐‘…, ๐‘Žโ‰ 0 is solved by using the formula ๐‘ฅ= โˆ’๐‘ยฑ ๐‘ 2 โˆ’ 4๐‘Ž๐‘ 2๐‘Ž . In this formula, ๐‘ 2 โˆ’4๐‘Ž๐‘ is the discriminant. If ๐‘ 2 โˆ’4๐‘Ž๐‘<0, then the solutions (roots) will be complex. Solve the equation ๐’› ๐Ÿ โˆ’๐Ÿ”๐’›+๐Ÿ๐Ÿ‘=๐ŸŽ. -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 Re Im ๐‘ง= 6ยฑ (โˆ’6 ) 2 โˆ’4(1)(13) 2(1) = 6ยฑ 36โˆ’52 2 ๐‘ง=3+2๐‘– = 6ยฑ โˆ’16 2 = 6ยฑ4๐‘– 2 ๐‘ง=3โˆ’2๐‘– โˆด๐‘ง=3ยฑ2๐‘– The Conjugate Root Theorem If the complex number ๐‘ง=๐‘Ž+๐‘๐‘–, ๐‘Ž, ๐‘โˆˆ๐‘…, is a root of a polymomial with real coefficients, then ๐‘ง =๐‘Žโˆ’๐‘๐‘– (conjugate of z) is also a root.

9 Polynomials with Complex Roots
12 Complex Numbers Polynomials with Complex Roots If ๐Ÿ+๐Ÿ๐’Š is a root of ๐Ÿ‘ ๐’› ๐Ÿ‘ โˆ’๐Ÿ“ ๐’› ๐Ÿ +๐Ÿ๐Ÿ‘๐’›+๐Ÿ“, find the other roots. 1+2๐‘– is a root โˆด1โˆ’2๐‘– is a root. (Conjugate Root Theorem) Step 1 Form a quadratic polynomial with these two roots. ๐‘ง 2 โˆ’ sum of roots ๐‘ง+product of roots=0 Sum of roots= 1+2๐‘– + 1โˆ’2๐‘– =2 Product of roots= 1+2๐‘– 1โˆ’2๐‘– =5 So the quadratic polynomial is ๐‘ง 2 โˆ’2๐‘ง+5=0 Step 2 Divide this function into the cubic function. Step 3 3๐‘ง+1 is a linear factor. Therefore, the solution to the equation 3๐‘ง+1 = 0 gives the real root. 3๐‘ง+1=0 โŸน๐‘ง= โˆ’ 1 3 The three roots are ๐‘ง=1+2๐‘–, ๐‘ง=1โˆ’2๐‘–, ๐‘ง=โˆ’ 1 3

10 โˆš 12 Complex Numbers Polar Form of a Complex Number (โˆ’ 3 ) 2 +(1 ) 2
Re Im Definition ๐‘Ÿ=|๐‘ฅ+๐‘ฆ๐‘–| ๐‘ง=๐‘ฅ+๐‘ฆ๐‘– The polar form of a complex number z is ๐‘Ÿ ๐‘๐‘œ๐‘ ๐œƒ+๐‘– ๐‘ ๐‘–๐‘›๐œƒ , where r is the modulus of the complex number and ๐œƒ is its argument anticlockwise angle . tan ๐œƒ = ๐‘ฆ ๐‘ฅ โŸน๐œƒ= tan โˆ’1 ๐‘ฆ ๐‘ฅ ๐‘Ÿ ๐‘ฆ ๐œƒ ๐‘ฅ Write the complex number โˆ’ ๐Ÿ‘ +๐’Š in polar form. Re Im ๐œƒ= tan โˆ’1 ๐‘ฆ ๐‘ฅ ๐‘Ÿ=|๐‘ฅ+๐‘ฆ๐‘–| ๐‘ง=โˆ’ 3 +๐‘– ๐›ผ= tan โˆ’ ๐‘Ÿ=|โˆ’ 3 +๐‘–| 1 ๐œƒ ๐›ผ ๐‘Ÿ= โˆš (โˆ’ 3 ) 2 +(1 ) 2 ๐›ผ= ๐œ‹ 6 3 (0,0) ๐‘Ÿ= 3+1 ๐œƒ=๐œ‹โˆ’ ๐œ‹ 6 = 5๐œ‹ 6 ๐‘Ÿ=2 Polar Form: ๐‘Ÿ cos๐œƒ+๐‘– sin๐œƒ =2(cos 5๐œ‹ 6 +๐‘– sin 5๐œ‹ 6 )

11 12 Complex Numbers De Moivreโ€™s Theorem Theorem
If ๐‘ง=๐‘Ÿ( cos ๐œƒ+๐‘– sin ๐œƒ) then ๐‘ง ๐‘› = ๐‘Ÿ ๐‘› ( cos ๐‘›๐œƒ+๐‘– sin ๐‘›๐œƒ), for ๐‘›โˆˆ๐‘. i.e: [๐‘Ÿ( cos ๐œƒ+๐‘– sin ๐œƒ) ] ๐‘› = ๐‘Ÿ ๐‘› ( cos ๐‘›๐œƒ+๐‘– sin ๐‘›๐œƒ), for ๐‘›โˆˆ๐‘. The formal proof of De Moivreโ€™s Theorem may be asked in the exam. Use de Moivreโ€™s Theorem to write (๐Ÿ+๐’Š ) ๐Ÿ๐ŸŽ in the form ๐’™+๐’š๐’Š, ๐’™,๐’šโˆˆ๐‘น. Step 1 Write 1+๐‘– in polar form, ๐‘Ÿ cos๐œƒ+๐‘– sin๐œƒ . Re Im ๐œƒ= tan โˆ’1 ๐‘ฆ ๐‘ฅ ๐œƒ= ๐œ‹ 4 ๐œƒ= tan โˆ’1 1 1+๐‘– Polar Form: ๐‘Ÿ cos๐œƒ+๐‘– sin๐œƒ = 2 (cos ๐œ‹ 4 +๐‘– sin ๐œ‹ 4 ) 1 [๐‘Ÿ( cos ๐œƒ+๐‘– sin ๐œƒ) ] ๐‘› = ๐‘Ÿ ๐‘› ( cos ๐‘›๐œƒ+๐‘– sin ๐‘›๐œƒ) ๐œƒ (0,0) 1 Step 2 Apply de Moivreโ€™s Theorem. = ( 2 ) 10 [cos ( ๐œ‹ 4 )+๐‘– sin ( ๐œ‹ 4 ) ] 10 = ( 2 ) 10 [cos 10( ๐œ‹ 4 )+๐‘– sin 10( ๐œ‹ 4 )] = cos ( 5๐œ‹ 2 )+๐‘– sin ( 5๐œ‹ 2 ) ๐‘Ÿ=|๐‘ฅ+๐‘ฆ๐‘–| ๐‘Ÿ= (1 ) 2 +(1 ) 2 ๐‘Ÿ= 2 = 32[0+1๐‘–] = 0+32๐‘–

12 โˆš 12 Complex Numbers (2 ) 2 +(2 3 ) 2
If ๐Ž=โˆ’๐Ÿโˆ’๐Ÿ ๐Ÿ‘ ๐’Š, solve the equation ๐’› ๐Ÿ’ โˆ’๐Ž=๐ŸŽ. ๐‘ง=(โˆ’2โˆ’2 3 ๐‘– ) 1 4 ๐‘ง 4 =๐œ” ๐‘ง 4 =โˆ’2โˆ’2 3 ๐‘– Step 1 Express โˆ’2โˆ’2 3 ๐‘– in general polar form: ๐‘Ÿ[( cos ๐œƒ+2๐‘›๐œ‹ + ๐‘– sin (๐œƒ+2๐‘›๐œ‹)] ๐œ”=โˆ’2โˆ’2 3 ๐‘– ๐œƒ ๐›ผ ๐›ผ= tan โˆ’ โŸน๐›ผ= ๐œ‹ 3 ๐‘Ÿ= โˆš (2 ) 2 +(2 3 ) 2 ๐œƒ=โˆ’๐œ‹+ ๐œ‹ 3 =โˆ’ 2๐œ‹ 3 ๐‘Ÿ= 16 =4 General polar form: ๐œ”=4 cos โˆ’ 2๐œ‹ 3 +2๐‘›๐œ‹ + ๐‘– sin โˆ’ 2๐œ‹ 3 +2๐‘›๐œ‹ Step 2 Apply de Moivreโ€™s Theorem: ๐‘ง=4 cos โˆ’ 2๐œ‹ 3 +2๐‘›๐œ‹ + ๐‘– sin โˆ’ 2๐œ‹ 3 +2๐‘›๐œ‹ 1 4 =4 [ cos โˆ’ ๐œ‹ 6 + ๐‘›๐œ‹ 2 + ๐‘– sin (โˆ’ ๐œ‹ 6 + ๐‘›๐œ‹ 2 )] 1 4

13 12 Complex Numbers ๐‘ง=4 cos โˆ’ ๐œ‹ 6 + ๐‘›๐œ‹ 2 + ๐‘– sin โˆ’ ๐œ‹ 6 + ๐‘›๐œ‹ 2 . 1 4
Step 3 Find the four solutions of For ๐’=๐ŸŽ For ๐’=๐Ÿ ๐‘ง= 2 cos โˆ’ ๐œ‹ 6 + ๐‘– sin โˆ’ ๐œ‹ 6 ๐‘ง= 2 cos โˆ’ ๐œ‹ 6 +๐œ‹ + ๐‘–sin โˆ’ ๐œ‹ 6 +๐œ‹ = โˆ’ 1 2 ๐‘– = cos 5๐œ‹ 6 + ๐‘–sin 5๐œ‹ 6 ๐’› ๐Ÿ = ๐Ÿ” ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ ๐’Š = 2 โˆ’ ๐‘– ๐’› ๐Ÿ‘ =โˆ’ ๐Ÿ” ๐Ÿ + ๐Ÿ ๐Ÿ ๐’Š For ๐’=๐Ÿ For ๐’=๐Ÿ‘ ๐‘ง= 2 cos โˆ’ ๐œ‹ 6 + 3๐œ‹ 2 + ๐‘–sin โˆ’ ๐œ‹ 6 + 3๐œ‹ 2 ๐‘ง= cos โˆ’ ๐œ‹ 6 + ๐œ‹ 2 + ๐‘–sin โˆ’ ๐œ‹ 6 + ๐œ‹ 2 = 2 cos ๐œ‹ 3 + ๐‘–sin ๐œ‹ 3 = cos 4๐œ‹ 3 + ๐‘–sin 4๐œ‹ 3 = ๐‘– ๐’› ๐Ÿ = ๐Ÿ ๐Ÿ โˆ’ ๐Ÿ” ๐Ÿ ๐’Š = 2 โˆ’ 1 2 โˆ’ ๐‘– ๐’› ๐Ÿ’ =โˆ’ ๐Ÿ ๐Ÿ โˆ’ ๐Ÿ” ๐Ÿ ๐’Š


Download ppt "Complex Numbers 12 Learning Outcomes"

Similar presentations


Ads by Google