Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Cosmic Star Formation

Similar presentations


Presentation on theme: "The Cosmic Star Formation"— Presentation transcript:

1 The Cosmic Star Formation
and Metallicity History Lisa Kewley Hubble Fellow U. Hawaii with C. Kobulnicky (U.Wyoming), S. Ellison (U. Vic), M. Geller (CfA), R. Jansen (ASU)

2 Summary Motivation Star Formation Rates Cosmic Star Formation History
Metallicity diagnostics Cosmic Metallicity History Conclusions & Future Directions

3 Motivation Galaxy Evolution Image credit: R. Thompson, NASA
Image credit: NASA

4 Star Formation History
Madau et al. (1996) Lilly et al. (1996) Madau - Hubble Deep Field Lilly - Canada France Redshift Survey

5 Optical Spectrum SFR measured in infrared, optical, radio, UV, X-rays
[OII]

6 Optical Spectrum disagreement
SFR measured in infrared, optical, radio, UV, X-rays disagreement

7 Star Formation Rate Discrepancies
Teplitz et al. (2003) filled = [OII] unfilled = Ha

8 Star Formation Rate Discrepancies
Teplitz et al. (2003) Norman et al. (2003) UV [OII] Ha IR radio comb * + x -0.5 -1.5 -1 -2 -2.5 0.2 0.4 0.6 0.8 SFR Density log (MO / yr / Mpc3) . Redshift

9 Towards SFR agreement Nearby Field Galaxy Survey (NFGS)
Jansen et al. (2000,2001) 198 galaxies objectively selected from the CfA galaxy survey (Davis & Peebles 1983, Huchra et al. 1983) full range in Hubble type full range of absolute magnitudes in CfA survey integrated optical spectra

10 Measuring Star Formation Rates
Infrared SFRIR = 4.5 x x LIR e.g., Kennicutt (1998) NASA/JPL-Caltech/S. Willner (CfA) Assumptions: young stars dominate emission large optical depth continuous burst model Salpeter IMF

11 Measuring Star Formation Rates
Optical : Ha SFRHa = 7.9 x x LHa e.g., Kennicutt (1998) Image credit: Fabio Bresolin (U. Hawaii) Assumptions: no dust total re-emission of ionizing photons Salpeter IMF

12 Ha vs. Infrared SFRs SFR(IR) SFR (Ha) Kewley et al.
(2002, AJ, 124, 3135) SFR(IR) SFR (Ha)

13 Star Formation Rate Discrepancies
Teplitz et al. (2003) filled = [OII] unfilled = Ha

14 [OII] SFR SFR([OII]) = (1.4 +/- 0.4) x 10-41 x L([OII])
(Kennicutt 1998, 1992) Key Assumptions: Observed [OII]/Ha = 0.6 Observed [NII]/Ha = 0.5 (blended) No effect from ionization state of gas Independent of metallicity Salpeter IMF

15 [OII] & Ha SFRs rms = 0.11 SFR [OII] SFR (Ha) Kewley, Geller, & Jansen
(2004, AJ, 127, 2002) 0.01 100 1.0 SFR (Ha) 0.4 ratio -0.4 SFR [OII]

16 [OII] SFR SFR([OII]) = (1.4 +/- 0.4) x 10-41 x L([OII])
(Kennicutt 1998, 1992) Key Assumptions: Observed [OII]/Ha = 0.6 Observed [NII]/Ha = 0.5 (blended) No effect from ionization state of gas Independent of metallicity Salpeter IMF

17 Ionizing Radiation Field
Starburst99 (Leitherer et al. 1999, Crowther et al. 2006) Instantaneous & Continuous Burst Models Extended Wolf-Rayet Atmospheres

18 Photoionization Models
Kewley et al. (2001) Mappings III - radiative transfer including dust Sutherland & Dopita 1993, Groves et al. 2003, 2006 Metallicity: 0.05, 0.2, 0.4, 1.0, 2.0 x solar Ionization Parameter: 1e7, 2e7, 4e7, 8e7, 1.5e8, 3e8 cm/s alternative: CLOUDY (Ferland et al. 1998) Self-consistent photoionization models to calculate radiative transfer through gas in the presence of dust.

19 ( ) Definitions Metallicity = Gas-phase Oxygen Abundance = log +12
Solar ~ 8.7 (Allende Prieto et al. 2001) log ( ) O H Ionization parameter: q = SH nH (cm/s) H ionizing photons/Area/s hydrogen density

20 New [OII] calibration: Theoretical

21 New [OII] calibration: Theoretical
kHa L([OII]) SFR([OII],Z) = a+ bZ - cZ2 + dZ3 where Z = metallicity = log(O/H)+12 Includes Metallicity & Ionization Parameter Correction Kewley, Geller, & Jansen (2004, AJ, 127, 2002)

22 New [OII] calibration: Theoretical
rms= (c.f. 0.11)

23 Metallicity at High-z Lilly, Carollo & Stockton 2003: M91 0.5 < z < 1.0 : log(O/H)+12~8.9 (c.f. 8.6 locally) Hippelein et al. (2003): 0.25 < z < 1.2 : [OII]/Ha = 0.9 (intrinsic) our [OII]/Ha - metallicity calibration log(O/H)+12~8.77 Teplitz et al. (2003): 0.4 < z < 1.4 : [OII]/Ha = 0.45 (observed) = 0.83 (intrinsic) log(O/H)+12~8.81 Luminosity Selection Effect

24 High-z Galaxies 0.8 < z < 1.6 Hicks et al. (2002)
0.5 < z < 1.1 Tresse et al. (2002)

25 Star Formation History
K98 [OII] SFR inconsistent reddening correction filled = [OII] unfilled = Ha data from Teplitz et al. (2003) Our [OII] SFR log(O/H)+12~8.6, consistent reddening correction also: Rosa-Gonzalez, Terlevich, & Terlevich (2002) Our [OII] SFR log(O/H)+12~8.8 consistent reddening and metallicity correction Kewley, Geller, & Jansen (2004)

26 Metallicity History Metallicity history of star-forming galaxies
still largely theoretical. Nagamine et al. (2001)

27 Metallicity History Galactic Winds
An idea of the extent and orientation of the galactic wind of M82 is seen in this image, which traces the ionised hydrogen (red) contained within it. The wind extends ~10,000 light years from the centre of the galaxy where the starbust is taking place. The burst of star formation powering the wind was probably caused by an interaction with the neighbouring galaxy M81 (not shown). Image credit: FOCAS, Subaru 8.2-m Telescope, NAOJ.

28 Theoretical Metallicity History
Predicted for: Star-forming gas Stars Neutral gas Figure from Dave & Oppenheimer? Once done, copy to end of presentation for questions about stellar metallicities and DLAs Add a slide about stellar metallicities (Savaglio work) and DLA metallicity evolution (Ellison, Prochaska, Fall) - also include a plot from Wild, Hewitt, Pettini work on contribution of DLAs to SF history. e.g., Dave & Oppenheimer (2007)

29 Theoretical Metallicity History
Predicted for: Star-forming gas Stars Neutral gas Figure from Dave & Oppenheimer? Once done, copy to end of presentation for questions about stellar metallicities and DLAs Add a slide about stellar metallicities (Savaglio work) and DLA metallicity evolution (Ellison, Prochaska, Fall) - also include a plot from Wild, Hewitt, Pettini work on contribution of DLAs to SF history. e.g., Dave & Oppenheimer (2007)

30 Metallicity Diagnostics
“R23” Kewley & Dopita (2002, ApJS, 142, 35) Also: Pagel (1979), McCall et al. (1985), ..., Skillman et al. (1989), McGaugh (1991),..., Zaritsky et al. (1994), Charlot (2001), ...

31 Metallicity Diagnostics - [NII]/Ha
Kewley & Dopita (2002) also: Denicolo, Terlevich & Terlevich (2002) Pettini & Pagel (2004) R23 and [NII]/Ha re-parameterized Kobulnicky & Kewley (2004)

32 Ionization Parameter - O32
q = SH nH (cm/s) H ionizing photons/Area/s hydrogen density Kewley & Dopita (2002)

33 Local Samples: NFGS + SDSS
Kewley, Jansen & Geller (2005) 45,086 SDSS star-forming galaxies g-band covering fraction > 20%

34 GOODS+ : 0.3 < z< 1 ~450 galaxies from: GOODS +
Lilly et al. (2003) Kobulnicky et al. (2003) Maier et al. (2004,05,06) Liang et al. (2004) Lamareille et al. (2005) Savaglio et al. (2005)

35 GOODS+ : 0.3 < z< 1 ~450 galaxies from: GOODS +
Lilly et al. (2003) Kobulnicky et al. (2003) Maier et al. (2004,05,06) Liang et al. (2004) Lamareille et al. (2005) Savaglio et al. (2005)

36 High-z sample 5 galaxies: 1<z<1.5 (Shapley et al. 2005)
[OII], [OIII], Hb, [NII] 7 galaxies: 2 < z < 2.5 (Shapley et al. 2004) [NII], Ha 2 galaxies: z=2.3, 2.9 (Kobulnicky & Koo 2000) [OII], [OIII], Hb 5 galaxies: 2.7<z<3.4 (Pettini et al. 2001) Check what the ensemble galaxy paper is by Shapley - is it the 2004 paper?

37 Metallicity Diagnostic Discrepancies
Kewley & Ellison (2007) SDSS mass-metallicity relation Tremonti et al. (2004)

38 Metallicity Diagnostic Discrepancies
Kewley & Ellison (2007)

39 Metallicity Diagnostic Discrepancies
Before: After: Kewley & Ellison (2007)

40 Metallicity History 0<z<3
NFGS Lyman Break Galaxies SDSS 0.15 dex/z GOODS+ assumes upper branch Kewley & Kobulnicky (2006, in prep)

41 Metallicity History 0<z<3
Models: Dave & Oppenheimer (2006) Kewley & Kobulnicky (2006, in prep)

42 Metallicity History Bias: 0.4 < z < 1
Assumptions: R23 upper branch AV = 1 Kewley & Kobulnicky (2006, in prep)

43 Solution: 0.4 < z < 1 NIR multi-object spectroscopy
Subaru - MOIRCS observations ongoing Soon to come: VLT - NIRMOS (2008/2009) Gemini-S - Flamingos-II (2008) Magellan - MMIRS (2008)

44 Metallicity History Bias: z > 1
Color selection BzK Lyman Break

45 High-z Metallicity Bias?
Try alternative selection: Lensed galaxies GRB Hosts [OII], [OIII] emitters Luminous red star-forming galaxies

46 Alternative selection: Lensed Galaxies
Lemoine-Busserolle et al. (2003) z=1.9 log(O/H)+12 ~ 7.6 +/- 0.2 log(O/H)+12 ~ 9.0 +/- 0.1

47 Metallicity History 0<z<3
Models: Dave & Oppenheimer (2006) Kewley & Kobulnicky (2006, in prep)

48 Alternative selection: GRB Hosts
Local GRB hosts may favor low metallicity galaxies GRB Hosts Kewley et al. (2006)

49 SFR Conclusions Agreement between SFRIR and SFRHa
Discrepancy between SFR[OII] and SFRHa: reddening and metallicity New theoretical SFR[OII] calibration removes this discrepancy ... but what if metallicity changes with redshift?

50 Metallicity Conclusions
Metallicity History for star-forming galaxies Metallicity evolution observed First comparison with appropriate metallicities from cosmological hydrodynamic simulations Steeper Metallicity evolution predicted More work needed for robust metallicity history...

51 Future Directions GOODS Near-IR Spectra Near future:
Subaru - MOIRCS - observations ongoing : VLT, Magellan, Gemini-S COS: UV spectra => Si, N, C, abundances Modelling of emission-line + other selection effects Investigate alternative selection methods Near future:

52 Future Directions NIRSpec: faint More distant future: JWST
galaxies z > 1 NIRSpec + MIRI: metallicity for z > 3 More distant future: JWST Microshutter Assembly - thousands of microshutters of NIRspec will allow many galaxies to be obtained spectroscopically at once. For example, in the same J-band spectrum, NIRspec will be able to simultaneously observe [NII]/Ha for galaxies at 0.4<z<1, [OIII]/Hb for galaxies at z= In H-band, [NII]/Ha could be obtained for those galaxies, as well as [OII] for galaxies at z~3. In K, [OIII], Hb would be obtained for the z~3 galaxies. MIRI would be required for galaxies at redshifts > 3.

53 Future Directions NIRSpec: faint galaxies More distant future: JWST
z > 1 NIRSpec + MIRI: metallicity for z > 3 More distant future: JWST NIRSpec NIRSpec + MIRI

54 Future Directions NIRSpec, MIRI More distant future: JWST
metallicity for z > 1 FGS-TFI metallicity gradient evolution More distant future: JWST JWST simulation: Windhorst, Conselice & Petro

55 Future Directions NIRSpec, MIRI
metallicity for z > 1 FGS-TFI metallicity gradient evolution More distant future: JWST Link SF & metallicity history through chemical evolution & galactic wind models JWST simulation: Windhorst, Conselice & Petro

56 Starburst99-Mappings On-Line L. Kewley & C. Leitherer
Available Now! Starburst99-Mappings On-Line L. Kewley & C. Leitherer Starburst99-Mappings Interface: Mappings Interface: Pre-run model grids Interactive web form to run models

57 AGN Removal Kewley et al. 2001, 2006

58 AGN Removal Kewley, Heckman, & Kauffmann (in prep)

59 Aperture Effects Large scatter => SFR errors unless integrated
spectra are used Kewley, Geller, & Jansen 2004 PASP, submitted covering fraction

60 Alternative selection: Lensed Galaxies
Lemoine-Busserolle et al. (2003) z=1.9 log(O/H)+12 ~ 7.6 +/- 0.2 log(O/H)+12 ~ 9.0 +/- 0.1

61 Alternative selection: GRB Hosts
Kewley, Brown & Geller (2006) Stanek et al. (2006)

62 IR SFRs SFR(IR) = 4.5 x 10-44 L(IR) 7.9 x 10-44 L(FIR) ~
(Kennicutt 1998, Calzetti et al. 2000) Assumptions: young stars dominate emission large optical depth continuous burst model Saltpeter IMF

63 [OII]/Ha & Reddening

64 [OII] and metallicity

65 Measuring Star Formation Rates
Infrared SFRIR = kIR x LIR e.g., Kennicutt (1998) Figure credit: Dale et al. (2001) See also Sanders & Mirabel (1996)

66 Metallicity at Higher redshift
Lilly, Carollo & Stockton (2003) Luminosity Selection Effect 0.5 < z < 1.0 CFRS log(O/H)+12~8.9 local NFGS: log(O/H)+12~8.6

67 High-z Galaxies 0.8 < z < 1.6 Hicks et al. (2002)
0.5 < z < 1.1 Tresse et al. (2002)

68 [OII] and luminosity Jansen et al. (2001)

69 Why are SFRs important? Galaxy evolution models Age, metallicity, SED Star formation history of galaxies Measured in infrared, optical, radio, UV, X-rays


Download ppt "The Cosmic Star Formation"

Similar presentations


Ads by Google