Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ultimate gradient limitation in Nb SRF cavities: the bi-layer model and prospects for high Q at high gradient Mattia Checchin TTC Meeting, CEA Saclay,

Similar presentations


Presentation on theme: "Ultimate gradient limitation in Nb SRF cavities: the bi-layer model and prospects for high Q at high gradient Mattia Checchin TTC Meeting, CEA Saclay,"β€” Presentation transcript:

1 Ultimate gradient limitation in Nb SRF cavities: the bi-layer model and prospects for high Q at high gradient Mattia Checchin TTC Meeting, CEA Saclay, Paris 07 JUL 2016

2 What is the ultimate gradient limitation for bulk Nb cavities?
Penetration of magnetic flux quanta in the superconductor Vortexes can penetrate when the applied magnetic field approaches the field of first penetration. This latter falls in between two limits: The lower critical field 𝐡 𝑐1 : Field at which a vortex far from a surface and not interacting with other vortices is stable in the superconductor The superheating field 𝐡 π‘ β„Ž : Highest field H for which the G-L free energy still posses a local minimum as a function of the order parameter Analytical formulas of 𝐡 𝑐1 and 𝐡 π‘ β„Ž for πœ… of our interest do not exist – we need numerical calculations! β†’ A self-consistent code was developed Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

3 Hc1 calculation Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

4 Hc1 from the Gibbs free energy
The lower critical field corresponds to the H value at which the non-interacting-vortex Gibbs free energy is equal to zero. Therefore: Where: 1 The lower critical field is then defined as: 𝑔 β„Ž β„Ž 𝑐1 𝑔=πœ€βˆ’ 4πœ‹ πœ… β„Ž=0 β„Ž= 𝐻 2 𝐻 𝑐 πœ€= 4πœ‹πΈ 𝐻 𝑐 2 πœ† 2 = 0 ∞ β„Ž 2 (π‘Ÿ) βˆ’ 𝑓 4 (π‘Ÿ) 2πœ‹π‘Ÿ π‘‘π‘Ÿ β„Ž 𝑐1 = πœ…πœ€ 4πœ‹ 1 A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957), [Soviet Phys.β€”JETP 5, 1174 (1957)] Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

5 Numerical calculation of GL equations in a vortex
The adimensional GL equations in cylindrical coordinates are: 𝑓 β€²β€² π‘Ÿ + 1 π‘Ÿ 𝑓 β€² π‘Ÿ βˆ’ πœ… 2 𝑓 π‘Ÿ 𝑓 2 π‘Ÿ βˆ’1+ π‘Ž π‘Ÿ βˆ’ 1 πœ…π‘Ÿ 2 =0 π‘Ž β€²β€² π‘Ÿ + 1 π‘Ÿ π‘Ž β€² π‘Ÿ βˆ’ 1 π‘Ÿ 2 π‘Ž π‘Ÿ βˆ’ 𝑓 2 π‘Ÿ π‘Ž π‘Ÿ βˆ’ 1 πœ…π‘Ÿ =0 β„Ž π‘Ÿ = π‘Ž β€² π‘Ÿ + 1 π‘Ÿ π‘Ž π‘Ÿ Order parameter Vector potential Magnetic field Boundary conditions: 𝑓 π‘Ÿ 0 =0 ; 𝑓 𝑅 =1 π‘Ž π‘Ÿ 0 =0 ; π‘Ž 𝑅 = 1 πœ…π‘… Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

6 Hsh calculation Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

7 Hsh calculation The superheating field corresponds to the highest field H for which the G-L free energy still posses a local minimum as a function of the order parameter Numerically, Hsh can be calculated as the highest field for which a valid solution (𝑓 0 >0) to the G-L equations still exist The self-consistent code increases H iteratively till the previous statement is verified Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

8 Numerical calculation of GL equations at the surface
The adimensional GL equations in 1 dimension are: 1 πœ… 2 𝑓 β€²β€² 𝑧 βˆ’ π‘Ž 2 𝑧 𝑓 𝑧 +𝑓 𝑧 βˆ’ 𝑓 3 (𝑧)=0 π‘Ž β€²β€² 𝑧 βˆ’ 𝑓 2 𝑧 π‘Ž 𝑧 =0 Order parameter Vector potential Magnetic field β„Ž 𝑧 = π‘Ž β€² (𝑧) Boundary conditions: 𝑓 β€² 0 =0 ; 𝑓 𝑍 =1 π‘Ž β€² 0 =𝐻 ; π‘Ž 𝑍 =0 Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

9 Simulations Summary The simulation are in agreement with previous calculations. The analytical formulas that best fit the simulated points between 0.2β‰€πœ…β‰€3 are: β„Ž 𝑐1 β‰…0.58 πœ… βˆ’0.57 β„Ž π‘ β„Ž β‰… πœ… βˆ’ πœ… βˆ’2 β„Ž 𝑐1,π‘ β„Ž = 𝐻 𝑐1,π‘ β„Ž 𝐻 𝑐 Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

10 Experimental data vs Theory
The parameters used in the simulation are experimental values from bibliography: 𝐻 𝑐 (0)=180 π‘šπ‘‡ 1 πœ† 0 =39 π‘›π‘š 2 πœ‰ 0 =38 π‘›π‘š 2 1 S. Casalbuoni et al., Nucl. Instr. Meth. Phys. Res. A 583, 45 (2005) 2 B. W. Maxfield and W. L. McLean, Phys. Rev. 139, A1515 (1965) Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

11 N-doped cavities so far quench below Bc1
Quench fields summary N-doped cavities so far quench below Bc1 β†’ statistically, N-doped cavities are quenching close or below the lower critical field 120 C baked cavities quench always above Bc1 β†’ 120 C baked cavities can reach the metastable Meissner state above the lower critical field EP cavities seem to quench at Bc1, but because of the HFQS we cannot conclude that Bc1 is the limitation β†’ the dissipation regime is different The Bean-Livingston barrier may give us more insight on what’s going on… Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

12 Bean-Livingston barrier calculation
Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

13 Bean-Livingston Barrier
𝑔 π‘₯ = 𝑔 𝑣𝑓 π‘₯ + 𝑔 𝑣𝑣 2π‘₯ + 𝑔 ∞ = 4πœ‹ πœ… β„Ž 𝑓 π‘₯ βˆ’ β„Ž 𝑣 2π‘₯ + β„Ž 𝑐1 πœ… βˆ’β„Ž Bulk C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14 (1964) Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

14 Bean-Livingston Barrier – Forces in play
𝑔 π‘₯ =βˆ’ 𝑓(π‘₯) 𝑑π‘₯=βˆ’ 𝑓 𝑓𝑣 π‘₯ + 𝑓 𝑣𝑣 (2π‘₯) 𝑑π‘₯ πœ™ 0 𝐡 Vortex – Field interaction Vortex – Anti-Vortex interaction 𝑓 𝑓𝑣 π‘₯ =βˆ’ 4πœ‹ πœ… πœ• β„Ž 𝑓 (π‘₯) πœ•π‘₯ 𝑓 𝑣𝑣 2π‘₯ = 4πœ‹ πœ… πœ• β„Ž 𝑣 (2π‘₯) πœ•π‘₯ πœ™ 0 βˆ’πœ™ 0 𝐡 Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

15 Bean-Livingston barrier
NB: the Bean-Livingston barrier represents the energy cost a vortex has to spend to penetrate the superconductor. Gibbs free energy Force per unit of length 𝐡= 𝐡 𝑐1 (πœ…) The cleaner the material (low k) the higher the barrier and the stronger the attractive force Why 120 C baked cavities overcome Bc1 if they have the shortest barrier? Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

16 Experimental data vs Theory
N-doped possess higher barrier (stronger attractive force) than 120 C baked cavities Why 120 C baked cavities, that should have lower quench field, are quenching instead at larger field than N-doped cavities? Why only 120 C baked cavities can systematically overcome Bc1? Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

17 Experimental data vs Theory
Non-constant πœ… inside the penetration depth Constant πœ… inside the penetration depth A. Romanenko et al., Appl. Phys. Lett. 104, (2014) Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

18 Bean-Livingston barrier with a dirty layer on the surface
Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

19 K profile I assumed an analytical sigmoidal πœ… profile that represents a dirty layer on the surface of the superconductor: πœ… π‘₯ =βˆ’ πœ… 1 βˆ’ πœ… 𝑒π‘₯𝑝 βˆ’ π‘₯βˆ’π‘‘ 𝑐 πœ† + πœ… 1 Where: πœ… 1 surface πœ… πœ… 2 bulk πœ… 𝑑 dirty layer thickness πœ† penetration depth 𝑐 profile steepness Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

20 Attractive force enhancement
πœ… 𝑠 =2.5, πœ… 𝑏 =1.04 constant πœ…=2.5 Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

21 Attractive force enhancement
πœ… 𝑠 =2.5, πœ… 𝑏 =1.04 constant πœ…=2.5 Γ—3 3 times larger attractive force!! Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

22 Force enhancement at the interface
repulsive force attractive force The force is enhanced by the presence of the dirty-clean interface Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

23 Dependence on the layer’s 𝜿
The dirtier the layer, the stronger the attractive force Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

24 Prospects for High Q0 at High Gradient
Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

25 The path for high Q0 at high gradients
Dirty layer at the rf surface: Enables high gradients (e.g. 120 C baked cavities) Nitrogen doping: Enables high Q-factors Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

26 The path for high Q0 at high gradients
Let’s merge together the two effects Dirty layer at the rf surface: Enables high gradients (e.g. 120 C baked cavities) Nitrogen doping: Enables high Q-factors Nitrogen infusion: Enables high Q-factors at high gradients! Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

27 The new Fermilab’s results show high Q0 at high gradient
Experimental results The new Fermilab’s results show high Q0 at high gradient The presence of a dirty doped layer at the surface might explain such results! Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

28 High 𝑄 0 at high field are possible!
Conclusions A dirty layer at the surface seems beneficial in order to increase the quench field above 𝐡 𝑐1 The magnetic field profile is perturbed by the dirty layer The attractive force is enhanced at the layer-bulk interface The smart tuning of the very surface might increase both 𝑄 0 and the maximum gradient Tenths of nanometers doped layer High 𝑄 0 at high field are possible! Low cryogenic cost at high fields Higher duty-cycle ILC? Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

29 Thank you Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

30 Backup Slides Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

31 Lets assume the following BVP
Shooting Method Lets assume the following BVP 𝑦 β€²β€² π‘₯ =𝑓 π‘₯,𝑦 π‘₯ , 𝑦 β€² π‘₯ 𝑦 0 = 𝑦 0 𝑦 𝑋 = 𝑦 𝑋 The correspondent IVP would be: 𝑦 0 = 𝑦 0 𝑦 β€² 0 =π‘Ž Solving the IVP we can get the solution 𝑦 π‘₯;π‘Ž at the position 𝑋. So, we can define the function 𝐹 π‘Ž as: 𝐹 π‘Ž =𝑦 𝑋;π‘Ž βˆ’ 𝑦 𝑋 If such function has a root π‘Ž, then 𝑦 π‘₯;π‘Ž is solution of the BVP as well. Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

32 Hc1 calculation code flow chart
BVP GL equations Shooting Method f(r0), f’(r0) a(r0), a’(r0) Solution k=kmax Final Ξ΅, Hc1 Print STOP R = R + Rstep k = k + kstep R=Rmax || f(R)>1 || f’(R)<0 ||a’(R)>0 || a’(R)<-1/(k R2) yes yes Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

33 Hsh calculation code flow chart
BVP GL equations Shooting Method f(0), a(0) Solution k=kmax Hsh Print STOP Z = Z + Zstep k = k + kstep Z=Zmax || f(Z)>1 || f’(Z)<0 Flag=true f(0)<0.0001 H = H + Hstep yes yes yes no solution yes Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

34 Why does the dirty layer enhance the force?
CONSTANT πœ…=2.5 βˆ’πœ™ 0 πœ™ 0 βˆ’πœ™ 0 πœ™ 0 zoom zoom πœ• β„Ž 𝑣 πœ•π‘₯ 2 πœ• β„Ž 𝑣 πœ•π‘₯ 1 Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

35 Why does the dirty layer enhance the force?
CONSTANT πœ…=2.5 βˆ’πœ™ 0 πœ™ 0 βˆ’πœ™ 0 πœ™ 0 π‘“βˆ πœ• β„Ž 𝑣 πœ•π‘₯ zoom zoom πœ• β„Ž 𝑣 πœ•π‘₯ 2 πœ• β„Ž 𝑣 πœ•π‘₯ 1 πœ• β„Ž 𝑣 πœ•π‘₯ 1 > πœ• β„Ž 𝑣 πœ•π‘₯ 2 Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016

36 LE-𝝁SR results A. Romanenko et al., Appl. Phys. Lett. 104, (2014) Mattia Checchin | TTC Meeting, CEA Saclay, 07 JUL 2016


Download ppt "Ultimate gradient limitation in Nb SRF cavities: the bi-layer model and prospects for high Q at high gradient Mattia Checchin TTC Meeting, CEA Saclay,"

Similar presentations


Ads by Google