 # To solve an equation with variables on both sides, use inverse operations to "collect" variable terms on one side of the equation. Helpful Hint Equations.

## Presentation on theme: "To solve an equation with variables on both sides, use inverse operations to "collect" variable terms on one side of the equation. Helpful Hint Equations."— Presentation transcript:

To solve an equation with variables on both sides, use inverse operations to "collect" variable terms on one side of the equation. Helpful Hint Equations are often easier to solve when the variable has a positive coefficient. Keep this in mind when deciding on which side to "collect" variable terms.

Move variable to one side
Steps Move variable to one side Add/subtract Multiply/divide

Solving Equations with Variables on Both Sides
Solve 7n – 2 = 5n + 6. 7n – 2 = 5n + 6 1: Move variable to one side –5n –5n 2n – 2 = 2: Add/subtract 3: multiple/divide 2n = n = 4

 Solve the equation. Check your answer. 4b + 2 = 3b 4b + 2 = 3b
1: Move variable to one side –3b –3b 2: add/subtract b + 2 = 0 Check 4b + 2 = 3b – 2 – 2 b = –2 4(–2) (–2) – –6 –6 –6

y = 0.7y – 0.3 1: Move variable to one side y = 0.7y – 0.3 –0.3y –0.3y 2: add/subtract = 0.4y – 0.3 3: Multiple/divide = 0.4y Check y = 0.7y – 0.3 (2) (2) – 0.3 2 = y – 0.3

Now you try 4a – 3 = 2a + 7 -3r + 9 = -4r + 5 3d + 8 = 2d – 17
2x – 7 = 5x – 10 a = 5 r = -4 d = -25 x = 1

To solve more complicated equations, you may need to first simplify by using the Distributive Property or combining like terms.

Don’t call me after midnight
1. D= Distributive property 2. C= combine like term 3. M = move variable to one side 4. A = addition/subtraction 5. M = Multiplication/division

3x + 15 – 9 = 2(x + 2) D: distributive Property 3x + 15 – 9 = 2(x + 2) 3x + 15 – 9 = 2(x) + 2(2) 3x + 15 – 9 = 2x + 4 C: Combine like term 3x + 6 = 2x + 4 M: move variable to one side –2x –2x x + 6 = – – 6 A: add/subtract x = –2

Simplifying Each Side Before Solving Equations
4 – 6a + 4a = –1 – 5(7 – 2a) D: Distributive P. 4 – 6a + 4a = –1 –5(7 – 2a) 4 – 6a + 4a = –1 –5(7) –5(–2a) 4 – 6a + 4a = –1 – a C: Combine like terms 4 – 2a = – a M: move variable to One side +2a a = a

= a = 12a A: add/subtract M: multiply/divide

D: Distributive Property M: Move variable to one side 3 = b – 1 A: Add/subtract 4 = b

Check 5 5

 3x + 15 – 9 = 2(x + 2) Check 3(–2) + 15 – 9 2(–2 + 2)
3(–2) + 15 – (–2 + 2) – – (0) 0 0

Jon and Sara are planting tulip bulbs. Jon has planted 60 bulbs and is planting at a rate of 44 bulbs per hour. Sara has planted 96 bulbs and is planting at a rate of 32 bulbs per hour. In how many hours will Jon and Sara have planted the same number of bulbs? How many bulbs will that be? Person Bulbs Jon 60 bulbs plus 44 bulbs per hour Sara 96 bulbs plus 32 bulbs per hour

Let h represent hours, and write expressions for the number of bulbs planted. 60 bulbs plus 44 bulbs each hour the same as 96 bulbs 32 bulbs each hour When is ? h = h h = h To collect the variable terms on one side, subtract 32h from both sides. –32h –32h h = 96

h = 96 Since 60 is added to 12h, subtract 60 from both sides. – – 60 12h = 36 Since h is multiplied by 12, divide both sides by 12 to undo the multiplication. h = 3

After 3 hours, Jon and Sara will have planted the same number of bulbs. To find how many bulbs they will have planted in 3 hours, evaluate either expression for h = 3: h = (3) = = 192 h = (3) = = 192 After 3 hours, Jon and Sara will each have planted 192 bulbs.

Let g represent Greg's age, and write expressions for his age.
Check It Out! Four times Greg's age, decreased by 3 is equal to 3 times Greg's age, increased by 7. How old is Greg? Let g represent Greg's age, and write expressions for his age. Four times Greg's age three times Greg's age is equal to decreased by increased by 3 7 . 4g – = g

Check It Out! Continued To collect the variable terms on one side, subtract 3g from both sides. 4g – 3 = 3g + 7 –3g –3g g – 3 = Since 3 is subtracted from g, add 3 to both sides. g = Greg is 10 years old.

Lesson Quiz 1. 7x + 2 = 5x + 8 2. 4(2x – 5) = 5x + 4
Solve each equation. 1. 7x + 2 = 5x (2x – 5) = 5x + 4 3. 6 – 7(a + 1) = –3(2 – a) 4. 4(3x + 1) – 7x = 6 + 5x – 2 5. 6. A painting company charges \$250 base plus \$16 per hour. Another painting company charges \$210 base plus \$18 per hour. How long is a job for which the two companies costs are the same? 3 8 all real numbers 1 20 hours

Similar presentations