Presentation is loading. Please wait.

Presentation is loading. Please wait.

Georg G. Raffelt, Max-Planck-Institut für Physik, München

Similar presentations


Presentation on theme: "Georg G. Raffelt, Max-Planck-Institut für Physik, München"— Presentation transcript:

1 Georg G. Raffelt, Max-Planck-Institut für Physik, München
Solar Axions Globular Cluster Supernova 1987A TeV Gamma Rays Gravity Waves Axions in the Skies Georg G. Raffelt, Max-Planck-Institut für Physik, München

2 High- and Low-Energy Frontiers in Particle Physics
10 27 eV Planck mass GUT scale Electroweak QCD Cosmological constant 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 1 10 −3 10 −6 Cosmic rays High-Energy Frontier CERN 22 mg Low-E Frontier “Intensity Frontier” (feeble interactions)

3 High- and Low-Energy Frontiers in Particle Physics
10 27 eV Planck mass GUT scale Electroweak QCD Cosmological constant 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 1 10 −3 10 −6 𝒎 𝑫 𝒎 𝑫 𝟐 𝑴 𝑴 Heavy right-handed neutrinos (see-saw mechanism) Axion dark matter (related to Peccei-Quinn symmetry) 𝒇 𝒂 𝒎 𝒂 ∼ 𝒎 𝝅 𝒇 𝝅 𝒇 𝒂 𝒎 𝝅 , 𝒇 𝝅

4 High- and Low-Energy Frontiers in Particle Physics
10 27 eV Planck mass GUT scale Electroweak QCD Cosmological constant 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 1 10 −3 10 −6 Black Hole Super-Radiance AxDM Experimental & Astro Limits Allowed fa SR Axion dark matter (related to Peccei-Quinn symmetry) 𝒇 𝒂 𝒎 𝒂 ∼ 𝒎 𝝅 𝒇 𝝅 𝒇 𝒂 𝒎 𝝅 , 𝒇 𝝅

5 Super-Radiance Masha Baryakhtar, Talk at Invisibles 2016,

6 Super-Radiance Masha Baryakhtar, Talk at Invisibles 2016,

7 Gravitational Wave Signals
Arvanitaki, Baryakhtar, Dimopoulos, Dubovsky & Lasenby, arXiv: Masha Baryakhtar, Talk at Invisibles 2016,

8 High- and Low-Energy Frontiers in Particle Physics
10 27 eV Planck mass GUT scale Electroweak QCD Cosmological constant 10 24 10 21 10 18 10 15 10 12 10 9 10 6 10 3 1 10 −3 10 −6 Grav.Waves from BHs AxDM Experimental & Astro Limits Allowed fa SR Axion dark matter (related to Peccei-Quinn symmetry) 𝒇 𝒂 𝒎 𝒂 ∼ 𝒎 𝝅 𝒇 𝝅 𝒇 𝒂 𝒎 𝝅 , 𝒇 𝝅

9 Solar Axions and Axion-Like Particles
Solar Models Solar Axions and Axion-Like Particles

10 Phenomenological Axion Properties
Gluon coupling (generic), defines normalization of axion scale 𝑓 𝑎 ℒ 𝑎𝐺 = 𝛼 𝑠 8𝜋 𝑎 𝑓 𝑎 𝐺 𝐺 Mass (generic) depends on up/down quark masses 𝑚 𝑎 = 𝑚 𝑢 𝑚 𝑑 𝑚 𝑢 + 𝑚 𝑑 𝑚 𝜋 𝑓 𝜋 𝑓 𝑎 ≈ 6 𝜇eV 𝑓 𝑎 GeV Axion-photon coupling (model dependent) ℒ 𝑎𝛾 =− 𝑔 𝑎𝛾 4 𝐹 𝐹 𝑎= 𝑔 𝑎𝛾 𝐄⋅𝐁 𝑎= 𝛼 2𝜋 𝐸 𝑁 −1.92 𝑎 𝑓 𝑎 𝐄⋅𝐁 Generic from 𝑎-𝜋-𝜂 mixing γ 𝑎 Model-dependent, E/N = 0 (KSVZ), 8/3 (DFSZ), many others γ Axion-nucleon coupling (model-dependent numerical factors 𝐶 𝑁 ) ℒ 𝑎𝑁 = 𝐶 𝑁 Ψ 𝑁 𝛾 𝜇 𝛾 5 Ψ 𝑁 𝜕 𝜇 𝑎 2 𝑓 𝑎 Axion-electron coupling in non-hadronic models is analogous with 𝐶 𝑒 𝑓 • Axial-vector current • Spin-dependent int’n 𝑎 𝑓

11 First discussion of Primakoff
effect for WW axions ( 𝑚 𝑎 ≫𝑇) For “invisible axions” ( 𝑚 𝑎 ≪𝑇) screening effects crucial (G.R., PRD 33, 897:1986)

12 Solar Observables Modified by Axion Losses
New opacity Old opacity Surface He abundance Depth Convective Zone Boron neutrinos Beryllium neutrinos Vinyoles, Serenelli, Villante, Basu, Redondo & Isern, arXiv:

13 Solar Sound-Speed Variation
New opacity New energy loss makes disagreement with seismic observations worse, especially in the central regions Vinyoles, Serenelli, Villante, Basu, Redondo & Isern, arXiv:

14 Global Fit from Solar Observables
Allow all input parameters to float, including chemical composition, and marginalize except for axion losses 𝑔 10 = 𝑔 𝑎𝛾 × GeV Vinyoles, Serenelli, Villante, Basu, Redondo & Isern, arXiv:

15 Experimental Tests of Invisible Axions
Primakoff effect: Axion-photon transition in external static E or B field (Originally discussed for 𝜋 0 by Henri Primakoff 1951) Pierre Sikivie: Macroscopic B-field can provide a large coherent transition rate over a big volume (low-mass axions) Axion helioscope: Look at the Sun through a dipole magnet Axion haloscope: Look for dark-matter axions with A microwave resonant cavity

16 Search for Solar Axions
Axion Helioscope (Sikivie 1983) Primakoff production Axion flux N a g a g Magnet S Axion-Photon-Oscillation Sun Tokyo Axion Helioscope (“Sumico”) (Results since 1998, up again 2008) CERN Axion Solar Telescope (CAST) (Data since 2003) Alternative technique: Bragg conversion in crystal Experimental limits on solar axion flux from dark-matter experiments (SOLAX, COSME, DAMA, CDMS ...)

17 LHC Magnet Mounted as a Telescope to Follow the Sun

18 CAST Results

19 Parameter Space for Axion-Like Particles (ALPs)
Two parameters: - ALP mass 𝑚 𝑎 - ALP-𝛾 coupling 𝑔 𝑎𝛾 Weinberg Wilczek “standard axion” Model dependence (KSVZ, DFSZ, …) broadens the “axion line” Γ 𝑎→𝛾𝛾 = 𝑔 𝑎𝛾 2 𝑚 𝑎 3 64𝜋

20 Parameter Space for Axion-Like Particles (ALPs)
Maximal mixing (“coherent”, small 𝑚 𝑎 ) End of solar spectrum Large 𝑚 𝑎 , 𝑎-𝛾-oscillations suppressed 𝑎-𝛾-oscillations enhanced with He filling ( 𝑚 𝛾 ∼ 𝑚 𝑎 ) CAST exclusion range

21 Next Generation Axion Helioscope (IAXO)
Need new magnet w/ – Much bigger aperture: ~1 m2 per bore – Lighter (no iron yoke) – Bores at Troom • Irastorza et al.: Towards a new generation axion helioscope, arXiv: • Armengaud et al.: Conceptual Design of the International Axion Observatory (IAXO), arXiv:

22 Parameter Space for Axion-Like Particles (ALPs)
- Improvement by a factor of 30 - Leaping into uncharted territory Pushing generic ALP frontier QCD Axion meV frontier

23 Axion Dark Matter from Topological Defects
Editor’s suggestion Diversity of scenarios for cosmic axion production depending on domain-wall index NDW and phase parameter δ of the bias term

24 Historical Neutrino Dark Matter Lessons
Early 1980s - If neutrinos have mass, probably they are dark matter ( 𝒎 𝝂 ~𝟏𝟎 𝐞𝐕) (“Neutrinos are known to exist”, only SM candidate) - Detection of 𝒎 𝝂 𝒆 ∼𝟑𝟎 𝐞𝐕 at ITEP, Moscow (PRL 58:2019, 1987) - Dedicated oscillation experiments (NOMAD 1995–1998 and CHORUS 1994–1997) Status 2015 - 70% of gravitating “mass” is dark energy - Dark matter must be mostly “cold” (structure formation) - Neutrinos have sub-eV masses (oscillations, cosmo limits) - Sub-dominant dark matter component History does not always repeat itself, but … - If axions (or similar) exist, MUST be ALL of dark matter?

25 Gamma-ALP Conversion in Astrophysical B-Fields
Credit: SLAC National Accelerator Laboratory/Chris Smith

26 Axion-Photon-Conversion from SN 1987A
in transverse galactic B-field SN 1987A SMM Primakoff production in SN core No excess g rays in coincidence with SN 1987A Galactic B-field models Payez, Evoli, Fischer, Giannotti, Mirizzi & Ringwald, arXiv:

27 Astrophysical ALP-Photon Conversion
Galactic and cluster fields (mG range) or intergalactic (nG) can cause significant conversion over kpc–Mpc scales: Low-mass ALPs Manuel Meyer, arXiv:

28 Hillas Plot ALP-g conversion 𝒈 𝒂𝜸 𝟏𝟎 𝟏𝟐 𝐆𝐞𝐕 𝑩𝑳∼𝟏
A. M. Hillas Ann. Rev. Astron. Astrophys. 22, 425 (1984) Size and B field strength of possible sites for particle acceleration. Objects below the line cannot accelerate protons to 1020 eV ALP-g conversion 𝒈 𝒂𝜸 𝟏𝟎 𝟏𝟐 𝐆𝐞𝐕 𝑩𝑳∼𝟏

29 Galactic Globular Cluster M55

30 Color-Magnitude Diagram for Globular Clusters
H He C O Asymptotic Giant H He Red Giant H He Horizontal Branch H Main-Sequence Particle emission reduces helium burning lifetime, i.e. number of HB stars C O White Dwarfs Hot, blue cold, red Color-magnitude diagram synthesized from several low-metallicity globular clusters and compared with theoretical isochrones (W.Harris, 2000)

31 New ALP Limits from Globular Clusters
Helium abundance and energy loss rate from modern number counts HB/RGB in 39 globular clusters Planck Ayala, Dominguez, Giannotti, Mirizzi & Straniero, arXiv:

32 Parameter Space for Axion-Like Particles (ALPs)

33 Axion-Electron Interaction
• Axions can interact with electrons, notably in GUT models, e.g. DFSZ model • Strong constraints from stars Electrons 𝐶 𝑒 2 𝑓 𝑎 Ψ 𝑒 𝛾 𝜇 𝛾 5 Ψ 𝑒 𝜕 𝜇 𝑎 Compton Pair Annihilation Electromagnetic Bremsstrahlung

34 Color-Magnitude Diagram of Globular Cluster M5
Brightest red giant measures nonstandard energy loss CMD (a) before and (b) after cleaning CMD of brightest 2.5 mag of RGB Viaux, Catelan, Stetson, Raffelt, Redondo, Valcarce & Weiss, arXiv:

35 Limits on Axion-Electron Coupling from GC M5
I-band brightness of tip of red-giant brach [magnitudes] Detailed account of theoretical and observational uncertainties • Uncertainty dominated by distance • Can be improved in future (GAIA mission) Axion-electron Yukawa 𝑔 𝑎𝑒 × 10 13 Limit on axion-electron Yukawa Mass limit in DFSZ model 𝑔 𝑎𝑒 < 2.6× 10 −13 (68% CL) 4.3× 10 −13 (95% CL) 𝑚 𝑎 cos 2 𝛽 < meV (68% CL) 15.4 meV (95% CL) Viaux, Catelan, Stetson, Raffelt, Redondo, Valcarce & Weiss, arXiv:

36 Axion Bounds from WD Luminosity Function
Limits on axion-electron coupling and mass limit in DFSZ model: 𝑔 𝑎𝑒 ≲3× 10 − 𝑚 𝑎 cos 2 𝛽 ≲10 meV Miller Bertolami, Melendez, Althaus & Isern, arXiv: ,

37 Period Change of Variable White Dwarfs
Period change Π of pulsating white darfs depends on cooling speed White dwarf G117−B15A White dwarf PG Favored by Π Limited by Π Córsico et al., arXiv: Battich et al., arXiv:

38 Summary of White Dwarf Bounds
Tip of RGB Luminosity Function Period Change Variable White Dwarfs Córsico et al., arXiv:

39 Neutrinos from Thermal Processes
Photo (Compton) Plasmon decay Pair annihilation Bremsstrahlung These processes were first discussed in after V-A theory

40 Neutrino-Photon-Coupling in a Plasma
Neutrino effective in-medium coupling 𝐿 eff =− 2 𝐺 F Ψ 𝛾 𝛼 − 𝛾 5 Ψ Λ 𝛼𝛽 𝐴 𝛽 Λ V 𝜇𝜈 𝐾 = 𝐶 V 𝑒 Π V 𝜇𝜈 (𝐾) Λ 𝜇ν For vector current it is analogous to photon polarization tensor Emission almost purely electron flavor sin 2 Θ W =0.2312 𝐶 V 2 = sin 2 Θ W 2 = for 𝜈 𝑒 𝐶 V 2 = − sin 2 Θ W 2 = for 𝜈 𝜇 and 𝜈 𝜏

41 Sanduleak Supernova 1987A 23 February 1987 Sanduleak

42 Supernova 1987A Energy-Loss Argument
SN 1987A neutrino signal Neutrino sphere Volume emission of new particles Neutrino diffusion Emission of very weakly interacting particles would “steal” energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) Late-time signal most sensitive observable

43 Three Phases of Neutrino Emission
Explosion triggered Cooling on neutrino diffusion time scale Shock breakout De-leptonization of outer core layers Shock stalls ~ 150 km Neutrinos powered by infalling matter Spherically symmetric Garching model (25 M⊙) with Boltzmann neutrino transport

44 Cooling Time Scale Exponential cooling model: T = T0 e-t/4, constant radius, L = L0 e-t/ Fit parameters are T0, , radius, 3 offset times for KII, IMB & BST detectors Loredo and Lamb, Bayesian analysis astro-ph/

45 Long-Term Cooling of EC SN (Garching 2009)
Neutrino opacities with strong NN correlations and nucleon recoil in neutrino-nucleon scattering. Exponential cooling with 𝜏=2.6 s Barely allowed by SN 1987A Neutrino opacities without these effects Much longer cooling times L. Hüdepohl et al. (Garching Group), arXiv:

46 Axion Emission from a Nuclear Medium
Axion-nucleon interaction: ℒ int = 𝐶 𝑁 2 𝑓 𝑎 Ψ 𝑁 𝛾 𝜇 𝛾 5 Ψ 𝑁 𝜕 𝜇 𝑎= 𝐶 𝑁 2 𝑓 𝑎 𝐽 𝜇 𝐴 𝜕 𝑎 𝜇 a N N Energy-loss rate (erg c m −3 s −1 ) 𝑄=∫𝑑 Γ 𝑎 ∫𝑑 Γ Nucleons ℳ 2 𝜔 (axion energy 𝜔) = 𝐶 𝑁 2 𝑓 𝑎 𝑛 𝐵 4 𝜋 ∞ 𝑑𝜔 𝜔 4 𝑆(−𝜔) Dynamical structure function, in nonrelativistic limit correlator of nucleon spin density operator 𝑆 𝜔,𝑘 = 4 3 𝑛 𝐵 −∞ +∞ 𝑑𝑡 𝑒 𝑖𝜔𝑡 〈𝝈 𝑡,𝑘 ⋅𝝈 0,𝑘 〉 + ... V N N Nucleon-Nucleon Bremsstrahlung Early calculations using one-pion exchange potential without many body effects or multiple-scattering effects over-estimated emission rate, see e.g. • Janka, Keil, Raffelt & Seckel, PRL 76:2621,1996. • Hanhart, Phillips & Reddy, PLB 499:9, 2001. • Bacca, Hally, Liebendörfer, Perego, Pethick & Schwenk, ApJ 758: 34 (2012). • Bartl, Pethick & Schwenk, PRL 113: (2014).

47 Axion-Nucleon Couplings
Axion-nucleon coupling (model-dependent numerical factors 𝐶 𝑁 ) ℒ 𝑎𝑁 = 𝐶 𝑁 Ψ 𝑁 𝛾 𝜇 𝛾 5 Ψ 𝑁 𝜕 𝜇 𝑎 2 𝑓 𝑎 Axion-electron coupling in non-hadronic models is analogous with 𝐶 𝑒 𝑓 • Axial-vector current • Spin-dependent int’n 𝑎 𝑓 Values from Grilli di Cortona et al. arXiv: Coupling to neutron could be very small!

48 Axion Bounds and Searches
103 106 109 1012 [GeV] fa eV keV meV ma neV 1015 Microwave Searches CASPEr Experiments Tele scope CAST Hadronic axions Too much hot dark matter String DW Too much cold dark matter (re-alignment with Qi = 1) Too much CDM (misalignment) Helium-burning stars (a-g-coupling, hadronic axions) SN 1987A Too many events Too much energy loss Globular clusters (He ignition), WD cooling (a-e coupling)

49 Diffuse Supernova Axion Background (DSAB)
Neutrinos from all core-collapse SNe comparable to photons from all stars Diffuse Supernova Neutrino Background (DSNB) similar energy density as extra-galactic background light (EBL), approx 10% of CMB energy density DSNB probably next astro neutrinos to be measured Axions with 𝑚𝑎 ~ 10 meV near SN 1987A energy-loss limit Provide DSAB with compable energy density as DSNB and EBL No obvious detection channel Raffelt, Redondo & Viaux work in progress (2011)

50 Cooling of Neutron Star in Cas A
Chandra x-ray image of non-pulsar compact remnant 𝐶 𝑛 𝑚 𝑎 ∼2.4 meV Measured surface temperature over 10 years reveals unusually fast cooling rate • Neutron Cooper pair breaking and formation (PBF) as neutrino emission process? • Evidence for extra cooling (by axions)? Leinson, arXiv:

51 CP-Violating Forces 𝑔 𝑠 𝑁 𝑔 𝑠 𝑁 𝑔 𝑠 𝑁 𝑔 𝑝 𝑒 𝑔 𝑝 𝑒 𝑔 𝑝 𝑒 𝑎 𝑎 𝑎
bulk bulk bulk spin spin spin 𝑎 𝑎 𝑎 Tests of Newton’s law & equivalence principle: Scalar axion coupling 𝑔 𝑠 𝑁 2 Torsion balance using polarized electron spins Axion couplings 𝑔 𝑠 𝑁 𝑔 𝑝 𝑒 T-violating force Spin-spin forces hard to measure Axion couplings 𝑔 𝑠 𝑒 2

52 Long-Range Force Experiments
Long-range force limits from tests of Newton’s law and equivalence principle (Mostly from Eöt-Wash Group, Seattle) Limits from long-range 𝑔 𝑠 𝑁 limits times astrophysical 𝑔 𝑝 𝑁 limits, compared with direct 𝑔 𝑠 𝑁 𝑔 𝑝 𝑁 constraints Raffelt, arXiv: Raffelt, arXiv: Experimental Exp+astro bulk bulk bulk spin 𝑎 𝑎

53 ARIADNE: Axion Resonant InterAction DetectioN Experiment
NMR Experiment meV ARIADNE: Axion Resonant InterAction DetectioN Experiment A.Geraci, A.Arvanitaki, A.Kapitulnik, Chen-Yu Liu, J.Long, Y.Semertzidis, M.Snow

54 Axion Dark Matter Density
Partly excluded by cosmic HDM bounds & Euclid sensitivity [arXiv: ] Hot DM Cold DM Javier Redondo 2014 Realignment Cosmic Strings & Domain Walls

55 Thermal Axion Density and EUCLID Sensitivity
Hot dark matter sensitivity of future surveys (EUCLID) is around minimal 𝑚 𝜈 Can probe axions down to 𝑚 𝑎 ∼0.15 eV Archidiacono, Basse, Hamann, Hannestad, Raffelt & Wong, arXiv:

56 Axion Bounds and Searches
103 106 109 1012 [GeV] fa eV keV meV ma neV 1015 Microwave Searches CASPEr Experiments Tele scope CAST Hadronic axions Too much hot dark matter Future EUCLID ARIADNE String DW Too much CDM (misalignment) Too much cold dark matter (re-alignment with Qi = 1) IAXO Helium-burning stars (a-g-coupling, hadronic axions) SN 1987A Too many events Too much energy loss Globular clusters (He ignition), WD cooling (a-e coupling)

57 Pie Chart of Dark Universe
Dark Energy ~70% (Cosmological Constant) Neutrinos % Ordinary Matter ~5% (of this only about 10% luminous) Dark Matter ~25%


Download ppt "Georg G. Raffelt, Max-Planck-Institut für Physik, München"

Similar presentations


Ads by Google