Presentation is loading. Please wait.

Presentation is loading. Please wait.

Beam position measurements at synchrotron light sources

Similar presentations


Presentation on theme: "Beam position measurements at synchrotron light sources"— Presentation transcript:

1 Beam position measurements at synchrotron light sources
Victor Smaluk NSLS-II

2 Requirements eeFACT 2016 10 – 100 m 1 μrad 10 – 100 μm 5 – 10 m
Resolution, micron or submicron level – orbit feedback systems Beam stability requirement: 5-10% of the beam size. 10 – 100 m 1 μrad 10 – 100 μm 5 – 10 m >10 kW/mrad2 BPM Reliability – active interlock systems Active Interlock System protects the storage ring and the frontend components from damage by synchrotron radiation; it drops the beam if its orbit exceeds the safety limits (e.g. 0.5 mm and 0.25 mrad at IDs). Fast data transfer and processing – fast orbit feedback systems Flexibility – machine commissioning, lattice optimization and beam studies Daresbury, UK Oct 2016

3 Button-type Electrostatic Pickup Sensitivity
eeFACT 2016 Beam charge Image charge Image current Button impedance Beam-induced voltage Daresbury, UK Oct 2016

4 Button-type Electrostatic Pickup Nonlinearity Correction
eeFACT 2016 E.Bekhtenev, BINP linear formula polynomial linearization Daresbury, UK Oct 2016

5 BPM Signal Processing eeFACT 2016 Daresbury, UK 24-27 Oct 2016
Digital signal processing won the battle against analog schemes DSP (BINP, EPAC 1996 TUP008L) FPGA (NSLS-II, IBIC 2014 WECYB2) Daresbury, UK Oct 2016

6 BPM Signal Processing Electronics
eeFACT 2016 E (GeV) C (m) BPMs MAX IV Sweden 3 528 200 Libera Brilliance+ Taiwan Photon Source Taiwan 518.4 168 PETRA III Germany 6 2304 227 Libera Brilliance ESRF France 844.4 224 ALBA Spain 268.8 120 Diamond Light Source UK 561.6 Libera Electron SSRF China 3.5 432 150 SOLEIL 2.75 354.42 ELETTRA Italy 2 259.2 96 Australian Synchrotron Australia 216 98 SPRING-8 Japan 8 288 KEK APS USA 7 1104 360 APS FPGA-based NSLS II 792 180 NSLS-II FPGA-based BESSY-II 1.9 240 112 Helmholtz-Zentrum Berlin, BxB CHESS (CESR) 768 100 Cornell, BxB Σ=2664 Daresbury, UK Oct 2016

7 NSLS-II BPM Module eeFACT 2016 Daresbury, UK 24-27 Oct 2016
J.Mead, IBIC 2014 WECYB2 Daresbury, UK Oct 2016

8 Analog Front End eeFACT 2016 Daresbury, UK 24-27 Oct 2016
J.Mead, IBIC 2014 WECYB2 Daresbury, UK Oct 2016

9 Signal Processing eeFACT 2016 Daresbury, UK 24-27 Oct 2016
J.Mead, IBIC 2014 WECYB2 Daresbury, UK Oct 2016

10 Resolution eeFACT 2016 Daresbury, UK 24-27 Oct 2016
Libera Brilliance+ BPM NSLS-II BPM W.Cheng, IBIC 2015 THALA02 Daresbury, UK Oct 2016

11 BPM System Configuration
eeFACT 2016 Example: NSLS-II 180 BPMs 30 BPM IOCs 30 Cell Controllers 1 Fast Active Interlock system Daresbury, UK Oct 2016

12 One Cell Configuration
eeFACT 2016 J.Mead, IBIC 2014 WECYB2 Daresbury, UK Oct 2016

13 Fast Orbit Feedback eeFACT 2016 Daresbury, UK 24-27 Oct 2016
O.Singh, IBIC TUBL1 Daresbury, UK Oct 2016

14 Active Interlock eeFACT 2016 Daresbury, UK 24-27 Oct 2016
K.Ha e.a., IPAC THPOY048 Data for most-mortem analysis Daresbury, UK Oct 2016

15 Beam Post Mortem Analysis
eeFACT 2016 G.Wang, NSLS-II Post mortem data are used to find beam dump source: Cavity trip (vacuum, Equipment Protection System, Personnel Protection System) Equipment Protection System (vacuum, temperature, utilities…) Personnel Protection System (doors, radiation alarms) Power Supplies Active Interlock Power dips Daresbury, UK Oct 2016

16 “Invisible” Measurements of Lattice Parameters
eeFACT 2016 G.Rehm, BIW 2010 MOCNB01 A small controlled sinusoid disturbance using an actuator (stripline, corrector magnet). Detection of this frequency component in a data stream (bunch-by-bunch position, turn-by-turn position, fast orbit data) using a digital detector. Accumulation over a certain measurement period, duration of which determines bandwidth and thus measurement noise. Measured parameters betatron tunes chromaticity (by measuring relative amplitude of a synchrotron sideband) betatron functions, amplitude/phase corrector orbit response Daresbury, UK Oct 2016

17 AC LOCO – Effective Technique of Lattice Correction
eeFACT 2016 Measurement Sine-wave (AC) beam excitation via fast correctors Possibility of simultaneous excitation of many correctors with different frequencies Recording BPM fast acquisition (10 kHz) data (all BPMs – 1 response vector) Synchronous detection of the beam oscillation amplitude Correction – standard LOCO technique Fitting the measured orbit response matrix to the model Quadrupole strengths BPM gains and rolls Corrector gains and rolls r.m.s. amplitude error at 20 Hz (5 s, samples) beam excitation by 23 correctors with 2 Hz separation Daresbury, UK Oct 2016

18 Crosscheck of Lattice Correction Techniques
eeFACT 2016 Orbit Linear Optics from Closed Orbits (LOCO) J.Safranek, NIMA 388, p.27 (1997) AC LOCO Turn-by-turn weighted correction of betatron phase and amplitude independent component analysis J.X.Huang e.a., PRSTAB 8, (2005) model-independent analysis J.Irwin e.a., PRL 82 (8) , p.1684 (1999) driving-terms-based linear optics characterization Y.Hidaka e.a., NAPAC-2016 (TUPOB52) Daresbury, UK Oct 2016

19 Gating BPM ADC Signals: Resolution Improvement
eeFACT 2016 B.Podobedov, IBIC 2015 TUCL02 Standard BPM signal processing looks at the entire turn (2.64 μs, 310 ADC channels) Applying a time gate results in resolution improvement by factor of 3 to 4 Daresbury, UK Oct 2016

20 Gating BPM ADC Signals: Application
eeFACT 2016 Y.Hidaka, NAPAC MOA2CO03 Measurement of tune shift with amplitude from BPM data with a single kicker pulse Unique NSLS-II BPM capability: Gated turn-by-turn BPM data that resolve groups of bunches within a turn The single-shot method eliminates possible errors of tune shift measurements caused by machine drift / jitter. Daresbury, UK Oct 2016

21 Thank you for your attention!
eeFACT 2016 Thank you for your attention! Daresbury, UK Oct 2016


Download ppt "Beam position measurements at synchrotron light sources"

Similar presentations


Ads by Google