Presentation is loading. Please wait.

Presentation is loading. Please wait.


Similar presentations

Presentation on theme: "BOLTED CONNECTIONS."— Presentation transcript:


2 Teaching Resources for Steel Structures
CONTENTS Introduction Bolted Connections Bolts and Bolting Force Transfer Mechanism Failure of Connections In shear In tension Combined shear and tension Block shear © IIT Madras, SERC Madras, Anna Univ., INSDAG Calcutta

3 INTRODUCTION Designed more conservatively than members because they are more complex to analyse and discrepancy between analysis and design is large In case of overloading, failure in member is preferred to failure in connection Connections account for more than half the cost of structural steel work Connection design has influence over member design Similar to members, connections are also classified as idealised types Effected through rivets, bolts or weld Codal Provisions

4 Teaching Resources for Steel Structures
TYPES OF CONNECTIONS -! Classification based on type of force in the bolts Single shear a) Lap Connection b) Butt Connection Double shear Shear Connections support (a) (b) Tension Connection and Tension plus Shear Connection © IIT Madras, SERC Madras, Anna Univ., INSDAG Calcutta

5 Teaching Resources for Steel Structures
BOLTS AND BOLTING Bolt Grade: Grade 4.6 :- fu = 400 N/mm2 and fy = 0.6*400 = 240 N/mm2 Bolt Types: Black, Turned & Fitted, High Strength Friction Grip Black Bolts: usually Gr.4.6, made snug tight, ductile and cheap, only static loads Turned & Fitted; Gr.4.6 to 8.8, Close tolerance drilled holes, 0.2% proof stress HSFG Bolts: Gr.8.8 to 10.9, less ductile, excellent under dynamic/fatigue loads © IIT Madras, SERC Madras, Anna Univ., INSDAG Calcutta

Bolt Shear Transfer – Free Body Diagram (a) Bearing Connection (b) Friction Connection T Frictional Force T Clamping Force, PO Bearing stresses Tension in bolt FORCE TRANSFER MECHANISM

7 Teaching Resources for Steel Structures
TIGHTENING OF HSFG BOLTS 1) Turn-of-nut Tightening 2) Calibrated Wrench Tightening 3) Alternate Design Bolt Installation 4) Direct Tension Indicator Method (a) Standard (b) Oversized (c )Short Slot (d) Long slot Hole types for HSFG bolts © IIT Madras, SERC Madras, Anna Univ., INSDAG Calcutta

Shear Connections with Bearing Bolts (a) Shearing of Bolts Ps = ps As where As = 0.78A (b) Bearing on Bolts Pbb = pbb d t Zone of plastification (c) Bearing on Plates Pbs = pbs d t  ½ e t pbs

9 IS 800:2007 Bearing Type Bolts lg = 8 d /(3 d+lg)
Shear capacity of bolt IS 800:2007 Reduction factor in shear for Long Joints Reduction factor in shear for Large Grip Lengths lg = 8 d /(3 d+lg) Reduction factor for Packing Plates pk = ( tpk)

10 Tb =(0.90 fub An)/ γmb < (fyb Asb (γm1 / γm0))/ γmb
Bearing Type Bolts Bearing Capacity of bolt on any ply Tension Capacity Bolt subjected to combined shear and tension Vsb = (2.5 d t fu )/ γmb Tb =(0.90 fub An)/ γmb < (fyb Asb (γm1 / γm0))/ γmb

11 Vbf = (2.2 d t fup ) / γmf < (3 d t fyp)/ / γmf
FAILURE OF CONNECTIONS-1 Shear Connections with HSFG Bolts (a) Slip Resistance Vsf = (µf ne Kh Fo)/ γmf Kh =1.0 (clearance hole)  = 0.45 (untreated surfaces) Fo= proof load (b) Bearing on Plates Vbf = (2.2 d t fup ) / γmf < (3 d t fyp)/ / γmf

12 Friction Grip Type Bolting
Slip resistance Vsf = (µf ne Kh Fo)/ γmf Where, µf = coeff. of friction (slip factor) as in Table 10.2 (µf < 0.55) ne = number of effective interfaces offering frictional resistance to slip Kh = 1.0 for fasteners in clearance holes = 0.85 for fasteners in oversized and short slotted holes = 0.7 for fasteners in long slotted holes loaded parallel to the slot. γmf = 1.10 (if slip resistance is designed at service load) γmf = 1.25 (if slip resistance is designed at ultimate load) Fo = minimum bolt tension (proof load) at installation ( 0.8 Asb fo) Asb = shank area of the bolt fo = proof stress (= 0.70 fub) Note: Vns may be evaluated at a service load or ultimate load using appropriate partial safety factors, depending upon whether slip resistance is required at service load or ultimate load.

Clean mill scale 0.33 Sand blasted surface 0.48 Red lead painted surface 0.1 Treatment of surface Coefficient of friction (µf)

(b) HSFG Connection Bearing type connection 2T T To To+T (d) Prying Effect Q B A b n T+Q 2T Proof Load Po Bolt force B kN Applied load 2T (kN) HSFG Bearing type ( c) External Tension versus bolt force

15 Friction Grip Type Bolting
Prying Force  = 2 for non-pretensioned and 1 for pretensioned  = 1.5 for LSM be = effective width of flange per pair of bolts

Table 1 Bolt Strengths in Clearance Holes in MPa Bolt strengths Bolt grade 4.6 8.8 Shear strength ps 160 375 Bearing strength pbb 435 970 Tension strength pt 195 450 Table 2 Bearing Strengths of Connected Parts in MPa Steel grade ST42S Gr.43 Gr.50 Bearing bolts pbs 418 460 550 HSFG bolts pbg 650 825 1065

17 Stresses due to Individual forces
Combination of stresses Fillet welds Combined bearing, bending and shear

Assumptions in traditional analysis M = Td Standard Connections (a) moment connection (b) simple connection e V T C d (a) (b) Connection elements are assumed to be rigid compared to the connectors Connector behaviour is assumed to be linearly elastic Distribution of forces arrived at by assuming idealized load paths Provide stiffness according to the assumed behaviour ensure adequate ductility and rotation capacity provide adequate margin of safety

19 Analysis of Bolt Groups Combined Shear and Moment in-Plane
CONTENTS -1 Analysis of Bolt Groups Combined Shear and Moment in-Plane Combined Shear and Moment out-of-plane Beam and Column Splices Beam to Column Connections Beam to Beam Connections Truss Connections Fatigue Behaviour

20 Teaching Resources for Steel Structures
TYPES OF CONNECTIONS Classification based on type of resultant force transferred (a) (b) Concentric Connections (a) (b) Moment Connections © IIT Madras, SERC Madras, Anna Univ., INSDAG Calcutta

21 BEAM AND COLUMN SPLICE Bolted Beam Splice
Strength, stiffness and ease in erection Assumptions in Rolled-section & Plate Girders (a)Conventional Splice (b) End-Plate Splice Bolted Beam Splice Column Splices – bearing type or HSFG moment splices

(a) Simple – transfer only shear at nominal eccentricity Used in non-sway frames with bracings etc. Used in frames upto 5 storeys (b) Semi-rigid – model actual behaviour but make analysis difficult (linear springs or Adv.Analysis). However lead to economy in member designs. (c) Rigid – transfer significant end-moments undergoing negligible deformations. Used in sway frames for stability and contribute in resisting lateral loads and help control sway.

V Simple beam-to-column connections a) Clip and seating angle b) Web cleats c) Curtailed end plate Economical when automatic saw and drill lines are available Check end bearing and stiffness of seating angle Clip angle used for torsional stability If depth of cleats < 0.6d design bolts for shear only Eliminates need to drill holes in the beam. Limit depth and thickness t < /2 (Gr.8.8) and /3 (Gr.4.6)

column web stiffeners diagonal stiffener web plate (a) (b) (c) Rigid beam-to-column connections a) Short end plate b) Extended end plate c) Haunched

25 TRUSS CONNECTIONS Truss Connections GussetPlate Splice plate e support
(a) Apex Connection (b) Support connection Truss Connections

26 Thank You


Similar presentations

Ads by Google