Presentation is loading. Please wait.

Presentation is loading. Please wait.

Product design of rigid

Similar presentations


Presentation on theme: "Product design of rigid"— Presentation transcript:

1 Product design of rigid
polymeric foams ECO design concept

2 RIGID POLYMERIC FOAMS Different kind of foams available in the market:
PVC foam PET foam PMI foam (X)PS foam PU foam Each one has main ADVANTAGE and DRAWBACKS

3 RIGID POLYMERIC FOAMS Different kind of foams available in the market:
PVC foam FIRE AND MECHANICAL / COST AND TOXICITY PET foam COST AND ENVIRONMENTAL/ UNIFORMITY PMI foam FIRE AND MECHANCAL / COST!!!!! (X)PS foam COST / FIRE AND MECHANICAL PU foam VERSATILITY AND TAILOR-MADE/ (COST) (MECHANICAL) Each one has main ADVANTAGE and DRAWBACKS

4 PU FOAM briefly Thermoset material Density range from 25 to 1500 kg/mc
MAINLY stoichometric reaction between polymeric Isocyanate and Polyols

5 PU FOAM DEVELOPMENT

6 SEVERAL APPLICATIONS

7 PRODUCT DESIGN, WHY? Different applications and different requirements
Many properties to be taken into consideration: Mechanical properties (compressive, tensile, shear) for foam itself Physical and Thermal properties (density, CTE, HDT,…) FST properties: fire reaction and fumes Main properties of foam in application (sandwich panels,…) GENERAL PURPOSE MATERIALS ARE NOT THE RIGHT SOLUTION FOR MANY APPLICATION (TAILOR-MADE DESIGN)

8 KEY PARAMETERS Raw material selection (backbone, functionality, viscosity) Chemical formulation development and optimization (ratios, cross-linking, additives) Process development and optimization (times, flowrates, yields, curing) Process and Product control

9 TARGETS OPTIMUM COMPROMISE between Phyiscal and Mechanical Properties
Yields and Productivity COST !!! Environmental aspects (ECO-DESIGN)

10 ECO-Design Concept LCA Approach in a REAL application

11 WIND ENERGY Wind blades constituted by sandwich structures:
Glass or Carbon fabrics Thermoset Resin: Epoxy Core material: PVC, PET or PU

12 WIND ENERGY Clean Energy: What does it mean?
Quantified value: LCA APPROACH

13 WIND ENERGY WASTE TREATMENT Clean Energy: What does it mean?
Quantified value: LCA APPROACH Main current issue: How to manage old blades ? WASTE TREATMENT

14 LCA short study on products for the market of the wind turbine construction in cooperation with University of Milano

15 TECHNICAL PART THE STUDY WAS PERFORMED IN DEEP COOPERATION BETWEEN Ap.E. Laboratory of Applied Electrochemistry of Università degli Studi di Milano: prof.ssa Sandra Rondinini, prof. Alberto Vertova, dott.ssa Cristina Locatelli R&D department of Sotecofoam S.r.l.: Ing. Massimo Orsini, Mr. Lionello Blasini

16 LCA APPROACH, WHY ? LCA studies are based on a scientific approach which leads to the calculation of the environmental impact of a product in terms of impact categories, i.e. environmental damages (as the quantified measurement of the potential environmental performance) For this reason, LCA studies are the preferred instruments for the comparison between products, with the double goal of developing new products (ECO-DESIGN) and addressing the consumers towards sustainable choices, by assessing the environmental impacts throughout the life cycle of the products they intend to buy.

17 LCA, IS THERE A STANDARD ? International Standard Organization (ISO) has defined general framework rules. ISO 14044:2006 specifies requirements and provides guidelines for life cycle assessment (LCA) including: definition of the goal and scope of the LCA, the life cycle inventory analysis (LCI) phase, the life cycle impact assessment (LCIA) phase, the life cycle interpretation phase, reporting and critical review of the LCA, limitations of the LCA, relationship between the LCA phases, and conditions for use of value choices and optional elements.

18 CALCULATION MODELS There are several different algorithms available as calculation model in order to evaluate the Enviromental Impact: The most actually important are: CML Method: the most widely used in the World (already used by other producers in the same market) ILCD Method: model chosen from European Union to develop the “Product Enviromental Footprint” certification

19 CML Method LCA studies are based on a scientific approach which leads to the calculation of the environmental impact of a product in terms impact categories, i.e. environmental damages. Life cycle environmental performance of a product can be defined as the quantified measurement of the potential environmental performance taking all relevant life cycle stages of a product or organisation. Marine aquatic ecotoxicity Abiotic depletion (fossil fuels) Global warming (GWP100a) Human toxicity Fresh water aquatic ecotoxicity Acidification Terrestrial ecotoxicity Eutrophication Photochemical oxidation Abiotic depletion Ozone layer depletion (ODP) Impact categories

20 System boundaries - 1 materials Fom production Raw materials transport
Panel production energy wind turbine blades manufacturing use Waste treatment waste Functional unit: 1 kg of foam panel Inventory data: PEF foams made by Sotecofoam: primary data PVC-based foams: secondary data collected from scientific literature and international patents. PET-based foams: secondary data collected from scientific literature and international patents. 2-ottanolo ha un CH2 in meno

21 System boundaries – 2 (Waste treatment)
materials Fom production Raw materials transport Panel production energy wind turbine blades manufacturing use Waste treatment waste Functional unit: 1 kg of foam panel Inventory data: PEF foams made by Sotecofoam: primary data PVC-based foams: secondary data collected from scientific literature and international patents. PET-based foams: secondary data collected from scientific literature and international patents. 2-ottanolo ha un CH2 in meno

22 ASSUMPTIONS FOR CML METHOD
TRANSPORT impact is not taken into consideration WASTE TREATMENT (only case 2) In the final applications foam material are deeply mixed with thermoset resin to realize the end-product and therefore recyclability is not available “Disposal to municipal inceneration” applied for PEF. “Waste inceneration of plastics (PET, PMMA, PC) EU-27S” per il PET “Waste inceneration of plastics (rigid PVC) EU-27S” per il PVC

23 Results for CML Method

24 Results for CML Method (no waste treatment) Impact category Unit
HPE foam PVC foam PET foam Abiotic depletion kg Sb eq Abiotic depletion (fossil fuels) MJ 78 68 69 Global warming (GWP100a) kg CO2 eq 3.7 3.2 2.8 Ozone layer depletion (ODP) kg CFC-11 eq Human toxicity kg 1,4-DB eq 0.81 0.52 1.31 Fresh water aquatic ecotox. 0.37 0.40 0.78 Marine aquatic ecotoxicity 1803 1858 2440 Terrestrial ecotoxicity 0.005 0.007 0.004 Photochemical oxidation kg C2H4 eq 0.001 Acidification kg SO2 eq 0.015 0.013 0.012 Eutrophication kg PO4--- eq 0.002 0.003

25 Results for CML Method (no waste treatment) Impact category Unit
HPE foam PVC foam PET foam Abiotic depletion kg Sb eq Abiotic depletion (fossil fuels) MJ 78 68 69 Global warming (GWP100a) kg CO2 eq 3.7 3.2 2.8 Ozone layer depletion (ODP) kg CFC-11 eq Human toxicity kg 1,4-DB eq 0.81 0.52 1.31 Fresh water aquatic ecotox. 0.37 0.40 0.78 Marine aquatic ecotoxicity 1803 1858 2440 Terrestrial ecotoxicity 0.005 0.007 0.004 Photochemical oxidation kg C2H4 eq 0.001 Acidification kg SO2 eq 0.015 0.013 0.012 Eutrophication kg PO4--- eq 0.002 0.003

26 Results for CML Method (no waste treatment) Impact category Unit
HPE foam PVC foam PET foam Abiotic depletion kg Sb eq Abiotic depletion (fossil fuels) MJ 78 68 69 Global warming (GWP100a) kg CO2 eq 3.7 3.2 2.8 Ozone layer depletion (ODP) kg CFC-11 eq Human toxicity kg 1,4-DB eq 0.81 0.52 1.31 Fresh water aquatic ecotox. 0.37 0.40 0.78 Marine aquatic ecotoxicity 1803 1858 2440 Terrestrial ecotoxicity 0.005 0.007 0.004 Photochemical oxidation kg C2H4 eq 0.001 Acidification kg SO2 eq 0.015 0.013 0.012 Eutrophication kg PO4--- eq 0.002 0.003

27 Results for CML Method (waste treatment for energy recovery)
Impact category Unit HPE foam PVC foam PET foam Abiotic depletion kg Sb eq Abiotic depletion (fossil fuels) MJ 81.2 78.5 73.0 Global warming (GWP100a) kg CO2 eq 3.9 6.0 5.5 Ozone layer depletion (ODP) kg CFC-11 eq Human toxicity kg 1,4-DB eq 0.91 0.63 1.41 Fresh water aquatic ecotox. 0.50 0.53 Marine aquatic ecotoxicity 2181 2272 2827 Terrestrial ecotoxicity 0.006 0.008 0.005 Photochemical oxidation kg C2H4 eq 0.001 Acidification kg SO2 eq 0.017 0.015 0.013 Eutrophication kg PO4--- eq 0.003 0.004

28 Results for CML Method (waste treatment for energy recovery)
Impact category Unit HPE foam PVC foam PET foam Abiotic depletion kg Sb eq Abiotic depletion (fossil fuels) MJ 81.2 78.5 73.0 Global warming (GWP100a) kg CO2 eq 3.9 6.0 5.5 Ozone layer depletion (ODP) kg CFC-11 eq Human toxicity kg 1,4-DB eq 0.91 0.63 1.41 Fresh water aquatic ecotox. 0.50 0.53 Marine aquatic ecotoxicity 2181 2272 2827 Terrestrial ecotoxicity 0.006 0.008 0.005 Photochemical oxidation kg C2H4 eq 0.001 Acidification kg SO2 eq 0.017 0.015 0.013 Eutrophication kg PO4--- eq 0.003 0.004

29 Results for CML Method (waste treatment for energy recovery)
Impact category Unit HPE foam PVC foam PET foam Abiotic depletion kg Sb eq Abiotic depletion (fossil fuels) MJ 81.2 78.5 73.0 Global warming (GWP100a) kg CO2 eq 3.9 6.0 5.5 Ozone layer depletion (ODP) kg CFC-11 eq Human toxicity kg 1,4-DB eq 0.91 0.63 1.41 Fresh water aquatic ecotox. 0.50 0.53 Marine aquatic ecotoxicity 2181 2272 2827 Terrestrial ecotoxicity 0.006 0.008 0.005 Photochemical oxidation kg C2H4 eq 0.001 Acidification kg SO2 eq 0.017 0.015 0.013 Eutrophication kg PO4--- eq 0.003 0.004

30 Results for CML Method (waste treatment for energy recovery)
Impact category Unit HPE foam PVC foam PET foam Abiotic depletion kg Sb eq Abiotic depletion (fossil fuels) MJ 81.2 78.5 73.0 Global warming (GWP100a) kg CO2 eq 3.9 6.0 5.5 Ozone layer depletion (ODP) kg CFC-11 eq Human toxicity kg 1,4-DB eq 0.91 0.63 1.41 Fresh water aquatic ecotox. 0.50 0.53 Marine aquatic ecotoxicity 2181 2272 2827 Terrestrial ecotoxicity 0.006 0.008 0.005 Photochemical oxidation kg C2H4 eq 0.001 Acidification kg SO2 eq 0.017 0.015 0.013 Eutrophication kg PO4--- eq 0.003 0.004

31 ILCD Method Environmental performances are evaluated on the basis of ILCD method Climate change Ozone depletion Human toxicity, non-cancer effects Human toxicity, cancer effects Particulate matter Ionizing radiation HH Ionizing radiation E (interim) Photochemical ozone formation Acidification Terrestrial eutrophication Freshwater eutrophication Freshwater ecotoxicity Marine eutrophication Land use Water resource depletion Mineral, fossil & ren resource depletion Impact categories

32 wind turbine blades manufacturing
System boundaries use materials Foam production Raw materials transport block production energy wind turbine blades manufacturing Waste treatment waste Functional unit: 1 kg of foam panel Inventory data: PEF foams: primary data PET and PVC-based foams: secondary data collected from scientific literature and international patents. Transport is modelled: PEF: primary data PET and PVC : an european production is considered and a distance of 2000km for all input is considered 2-ottanolo ha un CH2 in meno

33 ASSUMPTIONS FOR ILCD METHOD
Transport: PEF based on primary data PVC and PET 2000 km considered for all inputs Waste treatment: PEF and PET: thermovalorization (100%) PVC: thermovalorization (100%) and landfill (100%)

34 Results for ILCD Method

35 Results for ILCD Method
Impact category Unit HPE Foam PVC Foam PET Foam Climate change kg CO2 eq 6.45 7.20 6.00 Ozone depletion kg CFC-11 eq Human toxicity, non-cancer effects CTUh Human toxicity, cancer effects Particulate matter kg PM2.5 eq 0.0022 0.0030 0.0027 Ionizing radiation HH kBq U235 eq 0.219 0.644 0.817 Ionizing radiation E (interim) CTUe Photochemical ozone formation kg NMVOC eq 0.0160 0.0204 0.0139 Acidification molc H+ eq 0.0221 0.0272 0.0233 Terrestrial eutrophication molc N eq 0.0446 0.0542 0.0426 Freshwater eutrophication kg P eq 0.0005 0.0011 0.0017 Marine eutrophication kg N eq 0.0049 0.0057 0.0042 Freshwater ecotoxicity 45 65 54 Land use kg C deficit 1.198 3.373 5.154 Water resource depletion m3 water eq 0.016 0.043 0.022 Mineral, fossil & ren resource depletion kg Sb eq

36 Results for ILCD Method
Impact category Unit HPE Foam PVC Foam PET Foam Climate change kg CO2 eq 6.45 7.20 6.00 Ozone depletion kg CFC-11 eq Human toxicity, non-cancer effects CTUh Human toxicity, cancer effects Particulate matter kg PM2.5 eq 0.0022 0.0030 0.0027 Ionizing radiation HH kBq U235 eq 0.219 0.644 0.817 Ionizing radiation E (interim) CTUe Photochemical ozone formation kg NMVOC eq 0.0160 0.0204 0.0139 Acidification molc H+ eq 0.0221 0.0272 0.0233 Terrestrial eutrophication molc N eq 0.0446 0.0542 0.0426 Freshwater eutrophication kg P eq 0.0005 0.0011 0.0017 Marine eutrophication kg N eq 0.0049 0.0057 0.0042 Freshwater ecotoxicity 45 65 54 Land use kg C deficit 1.198 3.373 5.154 Water resource depletion m3 water eq 0.016 0.043 0.022 Mineral, fossil & ren resource depletion kg Sb eq

37 Results for ILCD Method
Impact category Unit HPE Foam PVC Foam PET Foam Climate change kg CO2 eq 6.45 7.20 6.00 Ozone depletion kg CFC-11 eq Human toxicity, non-cancer effects CTUh Human toxicity, cancer effects Particulate matter kg PM2.5 eq 0.0022 0.0030 0.0027 Ionizing radiation HH kBq U235 eq 0.219 0.644 0.817 Ionizing radiation E (interim) CTUe Photochemical ozone formation kg NMVOC eq 0.0160 0.0204 0.0139 Acidification molc H+ eq 0.0221 0.0272 0.0233 Terrestrial eutrophication molc N eq 0.0446 0.0542 0.0426 Freshwater eutrophication kg P eq 0.0005 0.0011 0.0017 Marine eutrophication kg N eq 0.0049 0.0057 0.0042 Freshwater ecotoxicity 45 65 54 Land use kg C deficit 1.198 3.373 5.154 Water resource depletion m3 water eq 0.016 0.043 0.022 Mineral, fossil & ren resource depletion kg Sb eq

38 Results for ILCD Method
Impact category Unit HPE Foam PVC Foam PET Foam Climate change kg CO2 eq 6.45 7.20 6.00 Ozone depletion kg CFC-11 eq Human toxicity, non-cancer effects CTUh Human toxicity, cancer effects Particulate matter kg PM2.5 eq 0.0022 0.0030 0.0027 Ionizing radiation HH kBq U235 eq 0.219 0.644 0.817 Ionizing radiation E (interim) CTUe Photochemical ozone formation kg NMVOC eq 0.0160 0.0204 0.0139 Acidification molc H+ eq 0.0221 0.0272 0.0233 Terrestrial eutrophication molc N eq 0.0446 0.0542 0.0426 Freshwater eutrophication kg P eq 0.0005 0.0011 0.0017 Marine eutrophication kg N eq 0.0049 0.0057 0.0042 Freshwater ecotoxicity 45 65 54 Land use kg C deficit 1.198 3.373 5.154 Water resource depletion m3 water eq 0.016 0.043 0.022 Mineral, fossil & ren resource depletion kg Sb eq

39 Results for ILCD Method
Impact category Unit PEF Foam PVC Foam PET Foam Climate change kg CO2 eq 6.45 7.20 6.00 Ozone depletion kg CFC-11 eq Human toxicity, non-cancer effects CTUh Human toxicity, cancer effects Particulate matter kg PM2.5 eq 0.0022 0.0030 0.0027 Ionizing radiation HH kBq U235 eq 0.219 0.644 0.817 Ionizing radiation E (interim) CTUe Photochemical ozone formation kg NMVOC eq 0.0160 0.0204 0.0139 Acidification molc H+ eq 0.0221 0.0272 0.0233 Terrestrial eutrophication molc N eq 0.0446 0.0542 0.0426 Freshwater eutrophication kg P eq 0.0005 0.0011 0.0017 Marine eutrophication kg N eq 0.0049 0.0057 0.0042 Freshwater ecotoxicity 45 65 54 Land use kg C deficit 1.198 3.373 5.154 Water resource depletion m3 water eq 0.016 0.043 0.022 Mineral, fossil & ren resource depletion kg Sb eq

40 Results for ILCD Method
Impact category Unit PEF Foam PVC Foam PET Foam Climate change kg CO2 eq 6.45 7.20 6.00 Ozone depletion kg CFC-11 eq Human toxicity, non-cancer effects CTUh Human toxicity, cancer effects Particulate matter kg PM2.5 eq 0.0022 0.0030 0.0027 Ionizing radiation HH kBq U235 eq 0.219 0.644 0.817 Ionizing radiation E (interim) CTUe Photochemical ozone formation kg NMVOC eq 0.0160 0.0204 0.0139 Acidification molc H+ eq 0.0221 0.0272 0.0233 Terrestrial eutrophication molc N eq 0.0446 0.0542 0.0426 Freshwater eutrophication kg P eq 0.0005 0.0011 0.0017 Marine eutrophication kg N eq 0.0049 0.0057 0.0042 Freshwater ecotoxicity 45 65 54 Land use kg C deficit 1.198 3.373 5.154 Water resource depletion m3 water eq 0.016 0.043 0.022 Mineral, fossil & ren resource depletion kg Sb eq

41 Results for ILCD Method
Impact category Unit HPE Foam PVC Foam PET Foam Climate change kg CO2 eq 6.45 7.20 6.00 Ozone depletion kg CFC-11 eq Human toxicity, non-cancer effects CTUh Human toxicity, cancer effects Particulate matter kg PM2.5 eq 0.0022 0.0030 0.0027 Ionizing radiation HH kBq U235 eq 0.219 0.644 0.817 Ionizing radiation E (interim) CTUe Photochemical ozone formation kg NMVOC eq 0.0160 0.0204 0.0139 Acidification molc H+ eq 0.0221 0.0272 0.0233 Terrestrial eutrophication molc N eq 0.0446 0.0542 0.0426 Freshwater eutrophication kg P eq 0.0005 0.0011 0.0017 Marine eutrophication kg N eq 0.0049 0.0057 0.0042 Freshwater ecotoxicity 45 65 54 Land use kg C deficit 1.198 3.373 5.154 Water resource depletion m3 water eq 0.016 0.043 0.022 Mineral, fossil & ren resource depletion kg Sb eq

42 NEXT STEPS Sotecofoam development in terms of ENVIRONMENTAL SUSTAINABILITY: Qualification of an internal expert technician for LCA evaluation Evaluation of entire production cycle in terms of ECO-DESIGN Design and development of new products with the target of constantly reducing environmental impact of Sotecofoam Products


Download ppt "Product design of rigid"

Similar presentations


Ads by Google