Presentation is loading. Please wait.

Presentation is loading. Please wait.

ME 475/675 Introduction to Combustion

Similar presentations


Presentation on theme: "ME 475/675 Introduction to Combustion"β€” Presentation transcript:

1 ME 475/675 Introduction to Combustion
Lecture 2 Ideal stoichiometric hydrocarbon combustion, Mixture molecular weight, Air/Fuel mass ratio

2 Ideal Stoichiometric Hydrocarbon Combustion
air CxHy + a(O2+3.76N2) οƒ  (x)CO2 + (y/2) H2O a N2 a = number of oxygen molecules per fuel molecule, 𝑁 𝑂 2 𝑁 𝐹𝑒𝑒𝑙 Number of air molecules per fuel molecule is a(1+3.76) If a = aST = x + y/4, then the reaction is Stoichiometric No O2 or Fuel in products This mixture produces nearly the hottest flame temperature If a < x + y/4, then reaction is fuel-rich (oxygen-lean, β€œfuel” left over) If a > x + y/4, then reaction is fuel-lean (oxygen-rich, O2 left over) Equivalence Ratio (of fuel) Ξ¦= π‘Ž 𝑆𝑑 π‘Ž π΄π‘π‘‘π‘’π‘Žπ‘™ = 𝑁 𝑂 2 𝑁 𝐹𝑒𝑒𝑙 𝑆𝑑 𝑁 𝑂 2 𝑁 𝐹𝑒𝑒𝑙 π΄π‘π‘‘π‘’π‘Žπ‘™ = 𝑁 𝐹𝑒𝑒𝑙,π΄π‘π‘‘π‘’π‘Žπ‘™ 𝑁 𝐹𝑒𝑒𝑙,𝑆𝑑 𝑁 𝑂 2 ,𝑆𝑑 𝑁 𝑂 2 ,π΄π‘π‘‘π‘’π‘Žπ‘™ Ξ¦=1β†’ Stiochiometric Ξ¦>1β†’ Fuel Rich Ξ¦<1β†’ Fuel Lean

3 Air to fuel mass ratio [kg air/kg fuel] of reactants
𝐴 𝐹 = π‘š π΄π‘–π‘Ÿ π‘š 𝐹𝑒𝑒𝑙 = 𝑁 π΄π‘–π‘Ÿ π‘€π‘Š π΄π‘–π‘Ÿ 𝑁 𝐹𝑒𝑒𝑙 π‘€π‘Š 𝐹𝑒𝑒𝑙 = 𝑁 𝑂 2 𝑁 𝐹𝑒𝑒𝑙 𝑁 π΄π‘–π‘Ÿ 𝑁 𝑂 π‘€π‘Š π΄π‘–π‘Ÿ π‘€π‘Š 𝐹𝑒𝑒𝑙 =π‘Ž (1+3.76) π‘€π‘Š π΄π‘–π‘Ÿ π‘€π‘Š 𝐹𝑒𝑒𝑙 For a stoichiometric mixture 𝐴 𝐹 𝑆𝑑 =4.76 π‘Ž 𝑆𝑑 (1+3.76) π‘€π‘Š π΄π‘–π‘Ÿ π‘€π‘Š 𝐹𝑒𝑒𝑙 ; π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž 𝑆𝑑 =π‘₯+ 𝑦 4 Need to find molecular weights

4 Molecular Weight of a Pure Substance
x Only one type of molecule: AxByCz… Molecular Weight MW = x(AWA) + y(AWB) + z(AWC) + … AWi = atomic weights Inside front cover of book Examples π‘€π‘Š 𝑂 2 = 2( AW 𝑂 ) = 2( ) = π‘˜π‘” π‘˜π‘šπ‘œπ‘™ π‘€π‘Š 𝐻 2 𝑂 = 2( AW 𝐻 ) + ( AW 𝑂 ) = 2( ) + ( ) = π‘˜π‘” π‘˜π‘šπ‘œπ‘™ π‘€π‘Š π‘ƒπ‘Ÿπ‘œπ‘π‘Žπ‘›π‘’ = π‘€π‘Š 𝐢 3 𝐻 8 = = π‘˜π‘” π‘˜π‘šπ‘œπ‘™ See page 701 for fuels

5 Mixtures containing n components
𝑁 𝑖 = number of moles of species 𝑖 𝑖=1, 2,..𝑛 Total number of moles in system 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑖=1 𝑛 𝑁 𝑖 Mole Fraction of species i πœ’ 𝑖 = 𝑁 𝑖 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑁 𝑖 𝑖=1 𝑛 𝑁 𝑖 Mass of species 𝑖= π‘š 𝑖 = 𝑁 𝑖 π‘€π‘Š 𝑖 Total Mass π‘š π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑖=1 𝑛 π‘š 𝑖 Mass Fraction of species i π‘Œ 𝑖 = π‘š 𝑖 π‘š π‘‡π‘œπ‘‘π‘Žπ‘™ = π‘š 𝑖 𝑖=1 𝑛 π‘š 𝑖 Useful facts: 𝑖=1 𝑛 πœ’ 𝑖 = 𝑖=1 𝑛 π‘Œ 𝑖 =1 but πœ’ 𝑖 β‰  π‘Œ 𝑖 Mixture Molar Weight: π‘€π‘Š 𝑀𝑖π‘₯ = π‘š π‘‡π‘œπ‘‘π‘Žπ‘™ 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ π‘€π‘Š 𝑀𝑖π‘₯ = π‘š 𝑖 𝑁 𝑖 = 𝑁 𝑖 π‘€π‘Š 𝑖 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ = πœ’ 𝑖 π‘€π‘Š 𝑖 (weighted average) π‘€π‘Š 𝑀𝑖π‘₯ = π‘š 𝑖 𝑁 𝑖 = π‘š π‘‡π‘œπ‘‘π‘Žπ‘™ π‘š 𝑖 / π‘€π‘Š 𝑖 = π‘Œ 𝑖 / π‘€π‘Š 𝑖 Example π‘€π‘Š π΄π‘–π‘Ÿ = πœ’ 𝑖 π‘€π‘Š 𝑖 =0.21 π‘€π‘Š 𝑂 π‘€π‘Š 𝑁 2 =0.21βˆ— 2βˆ— βˆ— 2βˆ— =0.21βˆ— βˆ— =28.85 π‘˜π‘” π‘˜π‘šπ‘œπ‘™π‘’ Remember and/or write inside front cover of your book Relationship between πœ’ 𝑖 and π‘Œ 𝑖 π‘Œ 𝑖 = π‘š 𝑖 π‘š π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑁 𝑖 π‘€π‘Š 𝑖 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ π‘€π‘Š 𝑀𝑖π‘₯ = πœ’ 𝑖 π‘€π‘Š 𝑖 π‘€π‘Š 𝑀𝑖π‘₯ πœ’ 𝑖 = π‘Œ 𝑖 π‘€π‘Š 𝑀𝑖π‘₯ π‘€π‘Š 𝑖

6 Stoichiometric Air/Fuel Mass Ratio
For Hydrocarbon fuel CxHy 𝐴 𝐹 𝑆𝑑 = π‘Ž 𝑆𝑑 (1+3.76) π‘€π‘Š π΄π‘–π‘Ÿ π‘€π‘Š 𝐹𝑒𝑒𝑙 π‘€π‘Š π΄π‘–π‘Ÿ = πœ’ 𝑖 π‘€π‘Š 𝑖 = π‘˜π‘” π‘˜π‘šπ‘œπ‘™π‘’ π‘€π‘Š 𝐹𝑒𝑒𝑙 = π‘€π‘Š 𝐢 π‘₯ 𝐻 𝑦 =π‘₯ 𝑦( ) aSt = x + y/4 𝐴 𝐹 𝑆𝑑 = π‘₯+ 𝑦 4 (4.76)28.85 π‘˜π‘” π‘˜π‘šπ‘œπ‘™π‘’ π‘₯ π‘˜π‘” π‘˜π‘šπ‘œπ‘™π‘’ +𝑦( π‘˜π‘” π‘˜π‘šπ‘œπ‘™π‘’ ) π‘˜π‘” π‘˜π‘šπ‘œπ‘™π‘’ π‘₯ π‘˜π‘” π‘˜π‘šπ‘œπ‘™π‘’ π‘₯ = 𝑦 π‘₯ 𝑦 π‘₯ For 𝐢 π‘₯ 𝐻 𝑦 , 10< 𝐴 𝐹 𝑆𝑑 <35 Constraints on y/x later (see page 291 for some 𝐴 𝐹 𝑆𝑑 =𝜈)

7 Equivalence Ratio Ξ¦ Ξ¦= π‘Ž 𝑆𝑑 π‘Ž π΄π‘π‘‘π‘’π‘Žπ‘™ = π‘Ž 𝑆𝑑 (1+3.76) π‘€π‘Š π΄π‘–π‘Ÿ π‘€π‘Š 𝐹𝑒𝑒𝑙 π‘Ž π΄π‘π‘‘π‘’π‘Žπ‘™ (1+3.76) π‘€π‘Š π΄π‘–π‘Ÿ π‘€π‘Š 𝐹𝑒𝑒𝑙 = 𝐴 𝐹 𝑆𝑑 𝐴 𝐹 π΄π‘π‘‘π‘’π‘Žπ‘™ = 𝐹 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐹 𝑆𝑑 𝐴 𝑆𝑑 𝐴 π΄π‘π‘‘π‘’π‘Žπ‘™ Ξ¦=1β†’ Stiochiometric Ξ¦>1β†’ Fuel Rich Ξ¦<1β†’ Fuel Lean π‘Ž= π‘Ž 𝑆𝑑 Ξ¦ = π‘₯+ 𝑦 4 Ξ¦ ; 𝐴 𝐹 π΄π‘π‘‘π‘’π‘Žπ‘™ = 𝐴 𝐹 𝑆𝑑 Ξ¦ = π‘₯+ 𝑦 π‘€π‘Š π΄π‘–π‘Ÿ π‘€π‘Š 𝐹𝑒𝑒𝑙 Ξ¦ CxHy + a(O2+3.76N2) % Stoichiometric Air (%SA)= 100% Ξ¦ = 𝐹 𝑆𝑑 𝐹 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐴 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐴 𝑆𝑑 βˆ—100% % Excess Oxygen (%EO) = (%SA)-100%

8 Example For extra credit, this problem may be clearly reworked and turned in at the beginning of the next class period. Problem 2.11, Page 91: In a propane-fueled truck, 3 percent (by volume) oxygen is measure in the exhaust stream of the running engine. Assuming β€œcomplete” combustion without dissociation, determine the air-fuel ratio (mass) supplied to the engine. Also find Equivalence Ratio: Ξ¦ % Stoichiometric air: %SA % Excess Oxygen: %EA ID: Are reactants Fuel Rich, Fuel Lean, or Stoichiometric? Work on the board

9 Thermodynamic Systems (reactors)
Closed systems Rigid tanks, piston/cylinders 1 = Initial state; 2 = Final state Mass: π‘š 1 = π‘š 2 =π‘š Chemical composition inside can change But atoms are conserved 1st Law 1 𝑄 2 βˆ’ 1 π‘Š 2 =Δ𝐸=π‘š( 𝑒 2 βˆ’ 𝑒 1 ) 𝑒=𝑒+ 𝑣 𝑔𝑧 1 𝑄 2 βˆ’ 1 π‘Š 2 =π‘š 𝑒 2 βˆ’ 𝑒 𝑣 βˆ’ 𝑣 𝑔 𝑧 2 βˆ’ 𝑧 1 How to find internal energy 𝑒 for mixtures, and change 𝑒 2 βˆ’ 𝑒 1 when composition changes due to reactions (not covered in Thermodynamics I) 1 π‘Š 2 1 𝑄 2 m, E

10 Open Systems (control volume)
Steady State, Steady Flow (SSSF) Fixed volume, no moving boundaries Properties are constant and uniform Inside CV (Dm = DE = 0), and At ports (β„Ž=𝑒+𝑃𝑣) One inlet and one outlet: π‘š 𝑖 = π‘š π‘œ = π‘š Atoms are conserved Energy: 𝑄 𝐢𝑉 βˆ’ π‘Š 𝐢𝑉 = π‘š β„Ž π‘œ βˆ’ β„Ž 𝑖 + 𝑣 π‘œ 2 2 βˆ’ 𝑣 𝑖 𝑔 𝑧 π‘œ βˆ’ 𝑧 𝑖 Composition and temperature of inlet and outlet may not be the same due to reaction Need to find β„Ž π‘œ βˆ’ β„Ž 𝑖 (not covered in Thermodynamics I) Dm=DE=0 Inlet i Outlet o 𝑄 𝐢𝑉 π‘š 𝑖 𝑒+𝑃𝑣 𝑖 π‘š 0 𝑒+𝑃𝑣 π‘œ π‘Š 𝐢𝑉

11 Combustion Thermochemistry
We use thermodynamics to evaluate the internal energy, enthalpy and entropy of a systems at different states The difference in energy and enthalpy between the products and reactants is used with the first law to predict The heat of combustion (energy released during combustion, due to changes in chemical bonds) if the products are assumed to be at the same temperature as the reactants The adiabatic flame temperature (product temperature assuming all reaction heat release stays in the system). Determined by assuming the products have the same energy as the reactants The steady state product composition for a reaction may be determined from entropy considerations Need to find The internal energy, enthalpy and entropy of mixtures of gases, and How to account for effects of chemical bonds These are not covered in ME 311 Thermodynamics I, but we we’ll cover them now

12 Ideal Gas Equation of State
𝑃𝑉=𝑁 𝑅 π‘ˆ 𝑇 Universal Gas Constant 𝑅 π‘ˆ =8.315 π‘˜π½ π‘˜π‘šπ‘œπ‘™π‘’ 𝐾 =8315 𝐽 π‘˜π‘šπ‘œπ‘™π‘’ 𝐾 Inside book front cover kJ = kN*m= kPa*m3 𝑃𝑉= π‘βˆ—π‘€π‘Š (𝑅 π‘ˆ /π‘€π‘Š)𝑇=π‘šπ‘…π‘‡ Specific Gas Constant R = 𝑅 π‘ˆ /π‘€π‘Š MW = Molecular Weight of that gas 𝑃𝑣=𝑅𝑇;𝑣= 𝑉 π‘š = 1 𝜌 𝑃=πœŒπ‘…π‘‡ Number of molecules N*NAV Avogadro's Number, 𝑁 𝐴𝑉 6.022βˆ— π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’π‘  π‘˜π‘šπ‘œπ‘™π‘’ 6.022βˆ— π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’π‘  π‘šπ‘œπ‘™π‘’ Number of molecules in 12 kg of C12

13 Partial Pressure 𝑃 𝑖 and volume fraction 𝑉 𝑖 𝑉 of a specie in a mixture at pressure 𝑃 and volume V
Each specie acts as if it was the only component at the given V and T Specie 𝑖: 𝑃 𝑖 𝑉= 𝑁 𝑖 𝑅 𝑒 𝑇 Mixture: 𝑃 𝑉=𝑁 𝑅 𝑒 𝑇 Ratio: 𝑃 𝑖 𝑃 = 𝑁 𝑖 𝑁 = πœ’ 𝑖 𝑃 𝑖 = πœ’ 𝑖 𝑃 𝑃 𝑖 = πœ’ 𝑖 𝑃 =𝑃 πœ’ 𝑖 =𝑃 Volume Fraction Each specie acts as if it was the only component at the given P and T Specie 𝑖: 𝑃 𝑉 𝑖 = 𝑁 𝑖 𝑅 𝑒 𝑇 Mixture: 𝑃 𝑉=𝑁 𝑅 𝑒 𝑇 Ratio: 𝑉 𝑖 𝑉 = 𝑁 𝑖 𝑁 = πœ’ 𝑖

14 End 2015

15 Extensive and Intensive System Properties
Intensive Properties Independent of system size Examples Per unit mass (lower case) v = V/m [m3/kg] u = U/m [kJ/kg] h = H/m [kJ/kg] Denoted using lower-case letters Exceptions Temperature T [Β°C, K] Pressure P [Pa] Molar Basis (use bar ) V = vm = N 𝑣 U = um = N 𝑒 H = hm = N β„Ž N number of moles in the system Useful because chemical equations deal with the number of moles, not mass Extensive thermodynamic properties depend on System Size (extent) Examples Volume V [m3] Internal Energy E [kJ] Enthalpy H = E + PV [kJ] Test: cut system in half Denoted with CAPITAL letters

16 Calorific Equations of State for a pure substance
𝑒=𝑒 𝑇,𝑣 =𝑒(𝑇)≠𝑓𝑛(𝑣) β„Ž=β„Ž 𝑇,𝑃 =β„Ž(𝑇)≠𝑓𝑛(𝑃) For ideal gases Differentials (small changes) 𝑑𝑒= πœ•π‘’ πœ•π‘‡ 𝑣 𝑑𝑇+ πœ•π‘’ πœ•π‘£ 𝑇 𝑑𝑣 For ideal gas πœ•π‘’ πœ•π‘£ 𝑇 = 0; πœ•π‘’ πœ•π‘‡ 𝑣 = 𝑐 𝑣 𝑇 𝑑𝑒= 𝑐 𝑣 𝑇 𝑑𝑇 π‘‘β„Ž= πœ•β„Ž πœ•π‘‡ 𝑃 𝑑𝑇+ πœ•β„Ž πœ•π‘ƒ 𝑇 𝑑𝑃 πœ•β„Ž πœ•π‘ƒ 𝑇 = 0; πœ•β„Ž πœ•π‘‡ 𝑃 = 𝑐 𝑃 𝑇 π‘‘β„Ž= 𝑐 𝑃 𝑇 𝑑𝑇 Specific Heat [kJ/kg C] Energy input to increase temperature of one kg of a substance by 1Β°C at constant volume or pressure How are 𝑐 𝑣 𝑇 and 𝑐 𝑃 𝑇 measured? Calculate 𝑐 𝑝 π‘œπ‘Ÿ 𝑣 = 𝑄 π‘šΞ”π‘‡ 𝑝 π‘œπ‘Ÿ 𝑣 π‘˜π½ π‘˜π‘”πΎ 𝑐 𝑝 = 𝑐 𝑝 βˆ—π‘€π‘Š; 𝑐 𝑣 = 𝑐 𝑣 βˆ—π‘€π‘Š π‘˜π½ π‘˜π‘šπ‘œπ‘™ 𝐾 m, T Q w P = wg/A = constant 𝑐 𝑝 m, T Q 𝑐 𝑣 V = constant

17 Molar Specific Heat Dependence on Temperature
Monatomic molecules: Nearly independent of temperature Only translational kinetic energy Multi-Atomic molecules: Increase with temperature and number of molecules Also possess rotational and vibrational kinetic energy

18 Internal Energy and Enthalpy
Once cp(T) and cv(T) are known, internal energy change can be calculated by integration 𝑒 𝑇 = 𝑒 π‘Ÿπ‘’π‘“ + 𝑇 π‘Ÿπ‘’π‘“ 𝑇 𝑐 𝑣 𝑇 𝑑𝑇 β„Ž 𝑇 = β„Ž π‘Ÿπ‘’π‘“ + 𝑇 π‘Ÿπ‘’π‘“ 𝑇 𝑐 𝑃 𝑇 𝑑𝑇 Appendix A (pp , bookmark) 𝑐 𝑝 𝑇 :π‘‘π‘Žπ‘π‘™π‘’π‘  π‘Žπ‘›π‘‘ π‘π‘’π‘Ÿπ‘£π‘’ 𝑓𝑖𝑑𝑠 Note 𝑐 𝑣 = 𝑐 𝑝 βˆ’ 𝑅 𝑒 𝑐 𝑝 = 𝑐 𝑝 /π‘€π‘Š

19 Mixture Properties Use these relations to calculate mixture enthalpy and internal energies (per mass or mole) as functions of the properties of the individual components and their mass or molar fractions. u and h depend on temperature, but not pressure Individual gas properties are on pp as functions of gas and T Enthalpy 𝐻 π‘šπ‘–π‘₯ = π‘š 𝑖 β„Ž 𝑖 = π‘š π‘‡π‘œπ‘‘π‘Žπ‘™ β„Ž π‘šπ‘–π‘₯ 𝒉 π’Žπ’Šπ’™ (𝑻)= π‘š 𝑖 β„Ž 𝑖 π‘š π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝒀 π’Š 𝒉 π’Š (𝑻) 𝐻 π‘šπ‘–π‘₯ = 𝑁 𝑖 β„Ž 𝑖 = 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ β„Ž π‘šπ‘–π‘₯ 𝒉 π’Žπ’Šπ’™ (𝑻)= 𝑁 𝑖 β„Ž 𝑖 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝝌 π’Š 𝒉 π’Š (𝑻) Internal Energy 𝒖 π’Žπ’Šπ’™ (𝑻)= 𝒀 π’Š 𝒖 π’Š (𝑻) 𝒖 π’Žπ’Šπ’™ 𝑻 = 𝝌 π’Š 𝒖 π’Š 𝑻

20 Standardized Enthalpy and Enthalpy of Formation
Needed for chemically-reacting systems because energy is required to form and break chemical bonds Not considered in Thermodynamics I Needed to find 𝑒 2 βˆ’ 𝑒 1 and β„Ž π‘œ βˆ’ β„Ž 𝑖 β„Ž 𝑖 𝑇 = β„Ž 𝑓,𝑖 π‘œ 𝑇 π‘Ÿπ‘’π‘“ +Ξ” β„Ž 𝑠,𝑖 (𝑇) Standard Enthalpy at Temperature T = Enthalpy of formation at standard reference state: Tref and PΒ° + Sensible enthalpy change in going from Tref to T = 𝑇 π‘Ÿπ‘’π‘“ 𝑇 𝑐 𝑃 𝑇 𝑑𝑇 Appendices A and B pp

21 Normally-Occurring Elemental Compounds
For example: O2, N2, C, He, H2 β„Ž 𝑓,𝑖 π‘œ 𝑇 π‘Ÿπ‘’π‘“ = 0 𝑇 π‘Ÿπ‘’π‘“ =298K Use these as bases to tabulate the energy for form of more complex compounds Example: At 298K (1 mole) O ,390 kJ οƒ  (2 mole) O To form 2O atoms from one O2 molecule requires 498,390 kJ/kmol of energy input to break O-O bond β„Ž 𝑓,𝑂 π‘œ 𝑇 π‘Ÿπ‘’π‘“ = 498,390 kJ 2 π‘˜π‘šπ‘œπ‘™ 𝑂 =249,195 π‘˜π½ π‘˜π‘šπ‘œπ‘™ 𝑂 β„Ž 𝑓,𝑖 π‘œ 𝑇 π‘Ÿπ‘’π‘“ for other compounds are in Appendices A and B


Download ppt "ME 475/675 Introduction to Combustion"

Similar presentations


Ads by Google