Download presentation
Presentation is loading. Please wait.
1
Lesson 12 Maxwells’ Equations
Gauss’ Law Faradays’ Law Amperes’ Law Ampere - Maxwell Law Maxwells Equations Integral Form Differential Form 1
2
Gauss' Law Gauss’ Law For Electric Fields: Q E · A = = F d e
surface enclosing electric charge Gauss’ Law For Magnetic Fields: B = = F d A B surface enclosing magnetic charge 2
3
Amperes and Faradays Laws
Amperes Law Amperes and Faradays Laws ò B d s = m I path enclosing current I B is due to I Faradays Law ò d F E d s = - B dt path enclosing changing magnetic flux E is due to changing Flux 3
4
Faradays Law Faradays Law
Change of emf around closed loop due to static Electric Field Change of emf around closed loop due to induced Electric Field 4
5
Changing Magnetic Flux Produces Induced Electric Field
Changing Flux I 5
6
Maxwells Law of Induction
At each instant of time Maxwells Law of Induction ò ( ) Q t E d A = net e ( ) If Q t is changing with time net dQ d F I = net = e E d dt dt Using Amperes ' Law we get a magnetic field given by ò d F B d s = m I = m e E d d dt path enclosing changing electric flux This relationship is called Maxwells Law of Induction 6
7
Changing Electric Flux Produces Induced Magnetic Field
Changing Flux II 7
8
We can thus generalize Amperes Law to look exactly analogous to Faradays’ Law
Ampere - Maxwell Law I 8
9
Displacement Current I
9
10
Displacement Current II
Get varying electric fields in capacitors Ic(t) + - E(t) 10
11
Displacement Current III
( ) ( ) t Q t Displacement Current III ( ) E t = = e A e ( ) ( ) Q t Q t ( ( F ) ) t = AE t = A = E A e e d F 1 dQ d F dQ \ E = Û e E = e dt dt dt dt Þ ( ) = ( ) I t I t d c ( ) I t is the virtual displacement current between plates d Can use Kirchoffs Rules for NON EQUILIBRIUM situation if one uses displacement current 11
12
Displacement Current IV
Calculation of Induced Magnetic Field due to changing Electric Flux Displacement Current IV Id(t) R Ic(t) Ic(t) r E(t) 12
13
ò Ampere - Maxwell Law II ( ) ( ) ( ) ( ) ( ) ( ) Ampere - Maxwell Law
B s = m + d I I c d choose path inbetween plates with radius r there steady state current = I c = using Kirchoffs Rule I I the total displacement in out ( ) ( ) current at any time I t = I t thus d tot c tot p r 2 2 r ( ) ( ) ( ) I t = I t = I t d path p 2 c tot 2 c tot R R 13
14
Calculation of B field using Ampere - Maxwell Law
on this path the magnetic field is constant and parallel to the path Calculation of B field using Ampere - Maxwell Law right hand rule for I thus d ò ò ò B d s = Bds = B ds = B 2 p r r 2 ( ) = m ( ) I + I = m I t c d R 2 c tot ß r 2 ( ) B 2 p r = m I t R 2 c tot ß m r ( ) ( ) B r , t = I t 2 R 2 c tot 14
15
Maxwells Equations - Integral form
15
16
Changing Fields Changing Electric Field Changing Magnetic Field
Fluctuating electric and magnetic fields Electro-Magnetic Radiation Changing Magnetic Field 16
17
Speed of Light 17
18
Lorentz Force Maxwells Equations PLUS the Lorentz Force
completly describe the behaviour of electricity and magnetism 18
19
Maxwells Laws - Differential Form I
Differential Form of Maxwells equations 19
20
ò ò ò ( ) Derivation I e E · d A = r r dV B · d A = closed surface
enclosed volume ò B d A = closed surface 20
21
ò ò ò ò ò ò Derivation II ¶ B E · d s = - · d A ¶ t é ù ê ú F = B · d
closed path Area enclosed by path é ò ù ê ú F = B d A ê ú B ê ë ú û ò ò æ ö 1 E B d s = ç J + e ÷ d A m è ø t closed path area enclosed by path é ò ù ê ú I = J d A ê ú ê ë û ú 21
22
Vector Calculus Vector Calculus 22
23
Gauss' and Stokes Theorems
Divergence Theorem ò ò F d A = ( Ñ ) F dV closed surface volume enclosed by surface é æ æ ö ö æ ù ö ê Ñ = ç ÷ i + ç ÷ j + ç ÷ k ú ë è x ø è y ø è z ø û Stokes ' Theorem ò ò ( ) F d s = Ñ F d A closed path area enclosed by path 23
24
ò ò ò ò ò ò Using Theorems I ( ) ( ) ¶ B E · d s = Ñ ´ E · d A = - · d
closed path area enclosed by path Area enclosed by path B Þ Ñ E = t ò ò ò æ E ö 1 m 1 m ( ) B d s = Ñ B d A = ç J + e ÷ d A è t ø closed path area enclosed by path area enclosed by path 1 m E Þ Ñ B = J + e t 24
25
ò ò ò ò ò Using Theorems II ( ) ( ) ( ) ( ) e E · d A = e Ñ · E d A =
dV closed surface enclosed volume enclosed volume r ( ) r Þ e Ñ E = e ò ò B ( d A = Ñ ) B d A = closed surface enclosed volume Þ Ñ B = 25
26
Maxwells Equations Maxwells Equations ( ) e Ñ · E = r r Ñ · B = ¶ B Ñ
B Ñ E = t E 1 m (Ñ B) = J + e t 26
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.