Download presentation
1
An Overview of Mouse Genetics
Mouse Genetics pg14
2
Reference Material Mouse Genetics, Concepts and Applications Silver, L.M. Oxford University Press, New York, NY, 1995, pp Genetic Variants and Strains of the Laboratory Mouse, 3rd Edition Edited by M. F. Lyon, S. Rastan and S.D.M. Brown. Oxford University Press,New York, NY, 2 Volumes, pp F Rev RO-2
3
Reference Material (Out of Print; Often in Libraries)
The Mouse in Biomedical Research Edited by H.L. Foster, J.D. Small and J.G. Fox.Academic Press, New York,NY.4 Volumes. Inbred Strains in Biomedical Research Festing, M.F.W. Oxford University Press, New York, NY. Origins of Inbred Mice Morse III,H.C. Academic Press, New York, NY. F Rev RO-2
4
Genetics I: From Fancy Mice to Mendel
Brief History of the Laboratory Mouse Details and Definitions Genetic Resources Gene Mapping Annotating the Mouse Genome F Rev RO-2
5
Origin of the House Mouse
Mouse Genetics pg4
6
Geographical Ranges of Subspecies
Mouse Genetics pg21
7
Mouse Genetics pg19
8
Evolutionary Relationships Among Commonly Used Model Organisms
9
Mouse as a Model System Small size: 25-40g (2, fold lighter than an average human) Short gestation time: ~10 weeks from being born to giving birth Breed well: ~5-10 pups/litter and an immediate postpartum estrus Fathers do not harm young Vaginal plug: timed pregnancies F Rev RO-2
10
Mouse Genome 3 x 109 base pairs ~1450 cM ~2Mb/cM ~25,000 genes
Organized into 19 autosomes and the X and Y Chromosome Chromosomes are acrocentric and show a continual decrease in size F Rev RO-2
11
Biomedical p106
12
Genetic Resources Outbred Stocks Inbred Strains and Substrains
F1 Hybrids Mutant Strains F Rev RO-2
13
Outbred Stocks Genetically undefined
Bred to maintain a maximal level of heterozygosity in all animals Long life spans, high disease resistance, large and frequent litters, low neonatal mortality, rapid growth, large size, CHEAP Examples: CD1, Swiss Webster, ICR, NIH Useful in experiments where genotype does NOT matter (biochemical purification, stud males) Should NEVER be used in any breeding experiment because of the genetic uncertainty F Rev RO-2
14
Inbred Strains All members of a strain are genetically identical
Bred by strict brother X sister matings for at least 20 generations (Note: ~3-4 generations/year; at least 5 years) F Rev RO-2
16
Consequences of Inbreeding up to 20 Generations
17
Inbred pg 16 Beck J. A. Nat. Genet. 2000;21:23-25
18
Inbred pg 17
20
26724 White Mice.
21
FVB/NJ AKR/J f26724 white Mice. NOD/LtJ BALB/cWt MRL/MpJ
22
BALB/cWt Y- chromosome non- disjuction
AKR/J Lymphatic leukemia BALB/cWt Y- chromosome non- disjuction FVB/NJ Male pronucleus in fertilized egg is large MRL/MpJ Lymphoproliferation NOD/LtJ Diabetes
23
Substrains Inbred pg 18
24
Simpson E. M. Nat. Genet. 1997;16:19-27
Nature Genetics May p21 Simpson E. M. Nat. Genet. 1997;16:19-27
25
Distribution of SNPs and Haplotypes on Chromosome 4
Job #35693.
26
F1 Hybrid Mice Produced by crossing mice of two different inbred strains Can be repeatedly produced as long as the parental strains exist Heterozygous at all loci at which the parental strains differ Genetically and phenotypically uniform Do not breed true (F2 generation mice undergo recombination) F Rev RO-2
27
Desirable Features and Uses of F1 Hybrid Mice
Hybrid vigor: Increased disease resistance, better survival under stress, greater longevity and larger litters than inbred mice Useful for carrying deleterious mutations, in radiation research, and for bioassays of pathogens, hormones, drugs, etc………. Accept transplants of tissue (tumors, skin, ovaries) from mice of either parental strain. F Rev RO-2
28
Some Common F1 Hybrid Strains
Handbook ..Jak Mice p49
29
26724 Blk Mice.
30
bgJ 26724 Blk Mice. white nose Aw-J me c2J
31
“A Mutation” What is it?: A variation from wild-type at a single locus
Mode of origin: Spontaneous or induced (Chemicals, Radiation, Gene Modification) Mode of inheritance: dominant, semidominant, recessive (or not heritable) Penetrance: complete or incomplete Interaction with other mutations F Rev RO-2
32
Some Practical Information about Mutations
Mouse Gene Symbols: always italicized (or underlined), assigned by the International Mouse Genetics Nomenclature Committee, change often Example: Dom; rec Serialization: Dom1, Dom2; rec1, rec2 Alleles of the Same Locus: Dom1a, Dom1b Special rules for pseudogenes, transgenics, etc.. F Rev RO-2
33
A Wealth of Information at….
The Jackson Laboratory Home Page: F Rev RO-2
34
Mutant Strains Coisogenic/Isogenic: mutation arose on an inbred strain and is still maintained on the strain of origin (C57BL/6J-M) Congenic: constructed by transferring a chromosomal segment carrying a locus, phenotypic trait, or mutation of interest from one strain to another by 10 or more successive backcross matings (B6.C-H-2d) F Rev RO-2
35
Mouse Genetics pg35
36
Biomedical p98
37
Genomic Homogeneity and Heterogeneity During the Creation of a Congenic Strain
38
Average Length of the Differential Chromosomal Segment During the Creation of a Congenic Strain
39
Why Make Congenic Strains?
Evaluate phenotype of a mutation (single gene trait) on one or more well defined genetic backgrounds Can be very useful in the analysis of complex traits F Rev RO-2
40
The Egfr (ko/ko) Example- Phenotype Dependent on Genetic Background
Peri-implantation lethal on a CF background due to degeneration of the inner cell mass Mid-gestation lethal on a 129/Sv background due to placental defects Survive up to weaning with abnormalities in many organs on a CD-1 background Treadgill et al., Science:269, , F Rev RO-2
41
Nature Genetics Nov p280a
42
Nature Genetics Nov p281
43
Nature Genetics Nov p280a Markel P. Nat. Genet. 1997;17:
44
Consomic Strains Very similar to congenic strains except that selection is for a whole chromosome instead of a chromosomal segment A set of consomic strains with each A/J chromosome on a C57BL/6J background have been constructed Particularly useful for the analysis quantitative trait loci (QTL’s) and modifier loci Singer et al., Science: 304, , 2004 F Rev RO-2
45
Recombinant Inbred Strains
Inbred pg 7
46
Recombinant Congenic (RC) Strains
Similar to RI strains, initial cross is between two distinct inbred strains Next two generations are made by backcrossing without selection to one of the parental stains Next 14 generations of brother x sister matings are performed Mosaic genomes skewed in the direction of the backcross parent (7/8 versus 1/8) F Rev RO-2
47
Gene Mapping-Definitions
Locus - a DNA segment that is distinguishable in some way by some form of genetic analysis (gene, anonymous DNA, etc…) Genetic map - a representation of the distribution of a set of loci within a genome (linkage, chromosomal, and physical) F Rev RO-2
48
Why Map Genes Facilitate moving from disease phenotype to cloning the causative gene(s) (positional cloning) Can provide function for a recently cloned gene Can be used to dissect out the heritable and nonheritable components of complex traits Comparative genetics F Rev RO-2
49
Linkage Maps Also known as recombination (meiotic) maps
Can only be constructed for loci that occur in two or more heritable forms or alleles Are generated by counting the number of offspring that receive either the parental or recombinant allele combinations at two or more loci F Rev RO-2
50
Where Genetic Recombinants Come From
51
Independent Assortment of Alleles from Unlinked Loci
Mouse Genetics pg138 F-7.2
52
Non-independent Assortment of Alleles from Linked Loci
Mouse Genetics pg139 F-7.3
53
Gene Order A more popular way of looking at it:
White, circling, not pudgy Pigmented, circling, not pudgy Pigmented, not circling, pudgy Gene order pu - c/Tyr - sh1 is derived from this multipoint cross by parsimony (I.e., that in which there are few or not double-crossover events) A more popular way of looking at it: non- recombinant recombinant pu c, Tyr sh1 # mice 46 51 1 1 1 Heterozygous, or “b” allele inherited from F1 parent Homozygous, or “a” allele inherited from pigmented parent
57
Live Linkage Map of the Mouse
10th International Congress of Genetics Montreal, Canada
58
Inbred pg 40
59
Non-Meiotic Mapping Methods
Somatic cell hybrids Radiation hybrids in situ hybridization F Rev RO-2
61
Biomedical p106
62
The Ultimate Physical Map
The sequence of the mouse genome Public draft sequence (~96% of the euchromatic genome of C57BL/6J excluding the Y chromosome) released in December Sanger Center is completing the sequence of chromosomes 2, 4, 11, and X Page lab has sequenced part of the mouse Y The rest? F Rev RO-2
63
Functional Annotation of the Mouse Genome
Need: One or more independent mutations in every gene Approach: Genotype to phenotype Approach: Phenotype to Genotype F Rev RO-2
64
Genotype to Phenotype Targeted mutations in each gene
Gene trap mutagenesis Chemical mutagenesis of ES cells Ultimately, must determine the phenotypic affect of the mutation, in vivo F Rev RO-2
65
Targeted mutations Homologous recombination in ES cells
Advantages: can create exactly what you want;conditional or null allele, temporal regulation, point mutations, small deletions, etc.; tend to know a lot about the gene which can help with interpreting phenotype Disadvantages: time-consuming and very expensive if all ~25,000 genes are to be mutated; must make assumptions about important functional domains F Rev RO-2
66
Targeted mutations the future?
Development of simpler/faster methods for construct building-”recombineering” and high throughput analysis The Sanger Plan--generate 10, , targeted mutations (probably conditional, not null) in a five year period; A FEW THOUSAND IN THE GERMLINE Part of a larger European effort that will include a collection of null alleles, total exact numbers are unclear US effort--discussion stage F Rev RO-2
67
Gene Trap Mutagenesis A form of insertional mutagenesis in ES cells
Various vectors have been developed but all are designed to report the expression of the endogenous gene at the site of integration and provide a DNA tag for rapid identification of the disrupted gene Lexicon:60% coverage of the mouse genome from 200,000 sequence tags International Gene Trap Consortium (IGTC):32% coverage in 27,000 tags (variety of vectors may overcome insertion site preference); 20% do not overlap with Lexicon F Rev RO-2
68
Gene Trap Mutagenesis Advantages: IGTC clones are available without restriction (see Nature Genet. 36, , 2004); high throughput (1 new gene added every 35 tags); combination of vectors helps overcome integration site preference; like targeted mutations, insertions can be archived as ES cells, which is inexpensive Disadvantages: Unclear what you have:null, hypomorphic, or neomorphic allele; most of the existing insertions have not been examined for phenotype, in vivo F Rev RO-2
69
Gene Trap Mutagenesis the Future?
IGTC plans to add additional tags ( until ~ saturation)) to expand the pool of tagged genes freely available IGTC plans on additional refinement of the technology (new vectors, post-insertional modification of trapped loci to create additional/desired alleles of a tagged gene) Likely will be up to individual investigators to put the mutations in the germ line and phenotype mice Toronto Component of the IGTC has done phenotyping on some of the animals F Rev RO-2
70
Chemical Mutagenesis of ES Cells
Induce mutations in ES cells with ENU A powerful chemical mutagen that primarily induces point mutations or small deletions Correlate mutant phenotype with the affected gene F Rev RO-2
71
Chemical Mutagenesis in ES Cells
Advantages: can directly screen for mutations in gene of interest and then make mice from the mutant cells;can create an allelic series of mutations, can also vary the mutagen to induce different types of lesions Disadvantages: like gene traps, it takes some work to determine what type of mutation you have-null or hypomorphic F Rev RO-2
72
Phenotype to Genotype Induce and select for a mutant phenotype
Map the position of the mutation-genome scan Positionally clone the mutation Correlate mutant phenotype with the affected gene F Rev RO-2
73
ENU Mutagenesis, in vivo
A powerful chemical mutagen of spermatogonial stem cells Primarily induces point mutations or small deletions Can select for dominant, semidominant or recessive mutations; mutations can be gain or partial or complete loss of function One mutation/locus in ~ gametes F Rev RO-2
74
Enu Mutagenesis Projects
International effort-large scale, genome wide Centers in England, Germany, Japan, Toronto ( Jax, Northwestern, Oak Ridge, Baylor and others A few smaller genome wide efforts, as well-Sloan Kettering F Rev RO-2
75
ENU Mutagenesis Advantages-always have a phenotype, can select for particular organ system/stage of development/tissue type; can get hypomorphic alleles (new alleles of existing mutations) Disadvantages-time consuming especially for recessive screens; works best with robust phenotypes;must go through a round of mapping but positional cloning is greatly simplified with the sequence of the genome;archiving and distributing the mutation is much more work than with ES cells F Rev RO-2
76
Issues for both Approaches
Phenotyping Databases Distribution F Rev RO-2
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.