Download presentation
Presentation is loading. Please wait.
1
PAX Polarized Antiproton EXperiment
dr. Paolo Lenisa Universita’ and INFN - Sezione di Ferrara PAX Polarized Antiproton EXperiment PAX Collaboration Spokespersons: Frank Rathmann Paolo Lenisa
2
PAX Collaborators Ma Bo-Qiang
Department of Physics, Beijing, P.R. China Klaus Goeke, Andreas Metz, and Peter Schweitzer Institut für Theoretische Physik II, Ruhr Universität Bochum, Germany Jens Bisplinghoff, Paul-Dieter Eversheim, Frank Hinterberger, Ulf-G. Meißner, and Heiko Rohdjeß Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany Sergey Dymov, Natela Kadagidze, Vladimir Komarov, Anatoly Kulikov, Vladimir Kurbatov, Vladimir Leontiev, Gogi Macharashvili, Sergey Merzliakov, Valerie Serdjuk, Sergey Trusov, Yuri Uzikov, Alexander Volkov, and Nikolai Zhuravlev Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia Igor Savin, Vasily Krivokhizhin, Alexander Nagaytsev, Gennady Yarygin, Gleb Meshcheryakov, Binur Shaikhatdenov, Oleg Ivanov, Oleg Shevchenko, and Vladimir Peshekhonov Laboratory of Particle Physics, Joint Institute for Nuclear Research, Dubna, Russia Wolfgang Eyrich, Andro Kacharava, Bernhard Krauss, Albert Lehmann, David Reggiani, Klaus Rith, Ralf Seidel, Erhard Steffens, Friedrich Stinzing, Phil Tait, and Sergey Yaschenko Physikalisches Institut, Universität Erlangen-Nürnberg, Germany Guiseppe Ciullo, Marco Contalbrigo, Marco Capiluppi, Paola Ferretti-Dalpiaz, Alessandro Drago, Paolo Lenisa, Michelle Stancari, and Marco Statera Instituto Nationale di Fisica Nucleare, Ferrara, Italy Nicola Bianchi, Enzo De Sanctis, Pasquale Di Nezza, Delia Hasch, Valeria Muccifora, Karapet Oganessyan, and Patrizia Rossi Instituto Nationale di Fisica Nucleare, Frascati, Italy
3
(continued) Stanislav Belostotski, Oleg Grebenyuk, Kirill Grigoriev, Peter Kravtsov, Anton Izotov, Anton Jgoun, Sergey Manaenkov, Maxim Mikirtytchiants, Oleg Miklukho, Yuriy Naryshkin, Alexandre Vassiliev, and Andrey Zhdanov Petersburg Nuclear Physics Institute, Gatchina, Russia Dirk Ryckbosch Department of Subatomic and Radiation Physics, University of Gent, Belgium David Chiladze, Ralf Engels, Olaf Felden, Johann Haidenbauer, Christoph Hanhart, Andreas Lehrach, Bernd Lorentz, Nikolai Nikolaev, Siegfried Krewald, Sig Martin, Dieter Prasuhn, Frank Rathmann, Hellmut Seyfarth, Alexander Sibirtsev, and Hans Ströher Forschungszentrum Jülich, Institut für Kernphysik Jülich, Germany Ashot Gasparyan, Vera Grishina, and Leonid Kondratyuk Institute for Theoretical and Experimental Physics, Moscow, Russia Alexandre Bagoulia, Evgeny Devitsin, Valentin Kozlov, Adel Terkulov, and Mikhail Zavertiaev Lebedev Physical Institute, Moscow, Russia N.I. Belikov, B.V. Chuyko, Yu.V. Kharlov, V.A. Korotkov, V.A. Medvedev, A.I. Mysnik, A.F. Prudkoglyad, P.A. Semenov, S.M. Troshin, and M.N. Ukhanov High Energy Physics Institute, Protvino, Russia Mikheil Nioradze, and Mirian Tabidze High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia Mauro Anselmino, Vincenzo Barone, Mariaelena Boglione, and Alexei Prokudin Dipartimento di Fisica Teorica, Universita di Torino and INFN, Torino, Italy Norayr Akopov, R. Avagyan, A. Avetisyan, S. Taroian, G. Elbakyan, H. Marukyan, and Z. Hakopov Yerevan Physics Institute, Yerevan, Armenia
4
Outline The Future GSI Facility Physics Case Transversity SSA
Electromagnetic Form Factors Antiproton Polarizer Polarized Internal Target Polarization Buildup Beam lifetimes Requirements for HESR Detector Concept Forward Spectrometer Large Acceptance Spectrometer Physics Performance Conclusion
5
Future Int. Accelerator Facility at GSI
SIS100/300 HESR: PANDA and PAX FLAIR: (Facility for very Low energy Anti-protons and fully stripped Ions) CR-Complex NESR
6
The Antiproton Facility
HESR (High Energy Storage Ring) Length 442 m Bρ = 50 Tm N = 5 x 1010 antiprotons High luminosity mode Luminosity = 2 x 1032 cm-2s-1 Δp/p ~ (stochastic-cooling) High resolution mode Δp/p ~ (8 MV HE e-cooling) Luminosity = 1031 cm-2s-1 HESR Gas Target and Pellet Target: cooling power determines thickness Super FRS NESR CR RESR Cooling – e- and/or stochastic 2MV prototype e-cooling at COSY Antiproton Production Target Antiproton production similar to CERN Production rate 107/sec at 30 GeV Energy = GeV/c
7
The Central Physics Issue
Twist-2 distribution functions Spin-average Helicity-difference Helicity-flip
8
Status of knowledge Transversity, Remains still unmeasured
Well known and well modeled Known, but poorly modeled Remains still unmeasured Poorly modeled Transversity, A review in: Barone, Drago,Ratcliffe, Phys. Rep. 359 (2002) 1
9
Transversity Chiral-odd: requires another chiral-odd partner
Probes relativistic nature of quarks No gluon analog for spin-1/2 nucleon Different evolution than Sensitive to valence quark polarization Properties: Chiral-odd: requires another chiral-odd partner
10
Transversity in Drell-Yan processes
qL q l+ l- q2=M2 qT PAX: Polarized antiproton beam → polarized proton target (both transverse) M invariant Mass of lepton pair Elementary QED process θ: polar angle of lepton in l+l- rest frame : azimuthal angle w.r.t. proton polarization
11
ATT in the Drell-Yan production at PAX
RHIC: τ=x1x2=M2/s~10-3 → Exploration of the sea quark content (polarizations small!) ATT very small (~ 1 %) PAX: M2~10 GeV2, s~30-50 GeV2, τ=x1x2=M2/s~ → Exploration of valence quarks (h1q(x,Q2) large) xF=x1-x2 0.2 0.4 0.6 0.15 0.25 Anselmino, Barone, Drago, Nikolaev (hep-ph/ v1) T=22 GeV T=15 GeV 0.3 ATT/aTT > 0.3 Models predict |h1u|>>|h1d| Main contribution to Drell-Yan events at PAX from x1~x2~τ deduction of x-dependence of h1u(x,M2)!
12
Single Spin Asymmetries
Several experiments have observed unexpectedly large single spin asymmetries in pbar-p at large values of xF ≥ 0.4 and moderate values of pT (0.7 < pT < 2.0 GeV/c) E704 Tevatron FNAL 200GeV/c π+ Large asymmetries originate from valence quarks: sign of AN related to u and d-quark polarizations π- xF
13
Gauge Link structure: Universality violation?
Gauge invariant definition of T-odd distribution function in DIS contains a future pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing DIS DY Collins, PLB 536 (2002) 43 Requires experimental checks
14
Proton Electromagnetic Formfactors
Measurement of relative phases of magnetic and electric FF in the time-like region Possible only via SSA in the annihilation pp → e+e- Double-spin asymmetry independent GE-Gm separation test of Rosenbluth separation in the time-like region
15
Polarized internal target
Interaction Region point-like 5-10 mm free jet low density 1012 cm-2 extended mm storage cell high density 1014 cm-2
16
Example: The HERMES target
17
The HERMES target Atomic Beam Source NIM A 505, (2003) 633
18
The HERMES target Atomic Beam Source Pz+ = |1> + |4>
NIM A 505, (2003) 633 Pz+ = |1> + |4> Pz- = |2> + |3>
19
The HERMES target Atomic Beam Source Storage cell Diagnostics:
NIM A 505, (2003) 633 Storage cell NIM A 496, (2003) 277 Diagnostics: Target Gas Analyzer NIM A 508, (2003) 265 Breit-Rabi Polarimeter NIM A 482, (2002) 606
20
Target polarization Relation to measured quantities:
PT = total target polarization a0 =atomic fraction in absence of recombination ar =atomic fraction surviving recombination Pa = polarization of atoms Pm = polarization of recombined molecules Relation to measured quantities: Sampling corrections ar = ca arTGA Pa = cP PaBRP
21
Target performance Longitudinal Polarization (B=335 mT)
Hydrogen Deuterium Pt = ± 0.028
22
Target performance Longitudinal Polarization (B=335 mT)
Hydrogen Deuterium Pt = ± 0.028
23
Target performance Tranverse Polarization (B=297 mT) 2002 - … Hydrogen
PT = 0.033
24
Principle of Spin Filter Method
( ) k P if , 2 1 tot Q = × s + P beampol. Q targetpol. k || beam For initially equally populated spin states: (m=½) (m=-½) Q 1 tot × s = Expectation Target Beam For low energy pp scattering: 1<0 tot+<tot-
25
Filter Test at TSR with protons
Results F. Rathmann. et al., PRL 71, 1379 (1993) T=23 MeV Experimental Setup
26
Puzzle from FILTEX Test
Observed polarization build-up: dP/dt = ± (1.24 ± 0.06) x 10-2 h-1 Expected build-up: P(t)=tanh(t/τ1), 1/τ1=σ1Qdtf=2.4x10-2 h-1 about factor 2 larger! σ1 = 122 mb (pp phase shifts) Q = 0.83 ± 0.03 dt = (5.6 ± 0.3) x 1013cm-2 f = MHz Three distinct effects: Selective removal through scattering beyond θacc=4.4 mrad σR=83 mb Small angle scattering of target protons into ring acceptance σS=52 mb Spin transfer from polarized electrons of the target atoms to the stored protons σE=-70 mb Horowitz & Meyer, PRL 72, 3981 (1994) H.O. Meyer, PRE 50, 1485 (1994)
27
Spin transfer from electrons to protons
Horowitz & Meyer, PRL 72, 3981 (1994) H.O. Meyer, PRE 50, 1485 (1994) α fine structure constant λp=(g-2)/2= anomalous magnetic moment me, mp rest masses p cm momentum a0 Bohr radius C02=2πη/[exp(2πη)-1] Coulomb wave function η=-zα/ν Coulomb parameter (neg. for anti-protons) v relative lab. velocity between p and e z beam charge number
28
Beam lifetimes in HESR The lifetime of a stored beam is given by
(Target thickness = dt=5·1014 atoms/cm2) 400 800 1200 T (MeV) 2 4 6 8 beam lilfetime τb (h) Ψacc = 1 mrad 5 mrad 10 mrad 10 20 mrad In order to achieve highest polarization in the antiproton beam, acceptance angles around Ψacc = 10 mrad are needed.
29
Polarization Build-up
Exploit spin transfer process σE works also if hadronic polarizing cross sections σR and σSturn out to be small N(t)=N0exp(-t/τb) τb=(fdtσL)-1 I(t)=N(t) f P(t)=1-exp(-t/τ1)~ σEdtfQt Optimum filtering time: t=2τb (from d(P2I)/dt=0) P(2τb )=2Q (σE/σL) Estimate for σL from Indiana Cooler σL=4.75 107 T-2 mb , (Note: σE~T-1) R.E. Pollock et al., NIM A 330, 380 (1993)
30
Antiproton Polarizer antiproton Polarization (%) Expected Buildup
t (h) 5 10 15 20 8 6 4 2 T=500 MeV T=800 MeV dt=5·1014 atoms/cm2 Pelectron=0.9 Goal spin-transfer cross section (electrons to antiprotons) 10 100 1000 T (MeV) e (mbarn) 1
31
Polarization Conservation in a Storage Ring
Indiana Cooler H.O. Meyer et al., PRE 56, 3578 (1997) HESR design must allow for storage of polarized particles!
32
Spin Manipulation in a Storage Ring
(A. Krisch et. al) Frequent spin-flips reduce systematic errors Spin-Flipping of protons and deuterons by artifical resonance RF-Dipole Applicable at High Energy Storage Rings (RHIC, HESR) Stored protons: P(n)=Pi()n =(99.3±0.1)%
33
Polarimetry Different schemes to determine target and beam polariz.
Suitable target polarimeter (Breit-Rabi or Lamb-Shift) to measure target polarization At lower energies ( MeV) analyzing power data from PS172 are available. Therefrom a suitable detector asymmetry can be calibrated → effective analyzing power Beam and target analyzing powers are identical measure beam polarization using an unpolarized target Export of beam polarization to other energies target polarization is independent of beam energy
34
Detector Concept Two complementary parts:
Forward detector (±8o acceptance) a la HERMES Identify unambiguously leading particles Measure precisely their momenta Central Large Acceptance Detector Measure angles and energies of medium energy electromagnetic particles (Drell-Yan)
35
Forward Detector
36
Large Acceptance Detector
37
Physics Performance Luminosity
Spin-filtering for two beam lifetimes: P > 5% N(pbar) = 5·1011 at fr~6·105 s-1 dt = 5·1014 cm-2 Time-averaged luminosity is about factor 3 lower beam loss and duty cycle Experiments with unpolarized beam L factor 10 larger
38
only non-resonant J/Ψ contribution included
Count rate estimate Uncertainty in ATT depends on target and beam polarization ( |P|>0.05, |Q|~0.9) Note: Conservative estimate since hadronic buildup effect might be large as well T = 15 GeV T = 22 GeV 240 days only non-resonant J/Ψ contribution included
39
Extension of the “safe” region
h1q(x,Q2) not confined to „safe“ region M > 4 GeV! unknown vector coupling, but same Lorentz and spinor structure as other two processes Unknown quantities cancel in the ratios for ATT, but helicity structure remains! Cross section increases by two orders from M=4 to M=3 GeV → Drell-Yan continuum enhances sensitivity of PAX to ATT Anselmino, Barone, Drago, Nikolaev (hep-ph/ v1)
40
Conclusion Challenging opportunities and new physics accessible with PAX at HESR unique access to a wealth of new fundamental physics observables polarized antiprotons (P>5%) Central physics issue: h1q (x,Q2) of the proton in DY processes Other issues: Electromagnetic Formfactors Polarization effects in Hard and Soft Scattering processes differential cross sections, analyzing powers, spin correlation parameters Machine design (more beam!) Need separate target station HESR must be capable to store polarized antiprotons Polarization buildup requires large acceptance angle (10 mrad) Storage cell target requires low-β section Slow ramping of beam energy needed to optimize pol. build-up
41
PAX: The next steps Jan.2004 LOI submitted
Formation of an advisory committee at GSI Apr.-May 2004 Evaluation of LOI’s (If approved) Techn. Report (with Milesones) Evaluations & Green Light for Construction Technical Design Reports (for Milestones) 2012 Commissioning of HESR
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.