Presentation is loading. Please wait.

Presentation is loading. Please wait.

The excitation and decay of nuclear isomers

Similar presentations


Presentation on theme: "The excitation and decay of nuclear isomers"— Presentation transcript:

1 The excitation and decay of nuclear isomers
2. Isomer decay rates Phil Walker CERN and University of Surrey, UK ● issues from yesterday ● isomer types ● isomers and the shell model ● K isomers ● K-isomer decay rates

2 Issues from yesterday 1. Parity mixing in γ decay: 180mHf 8- isomer
J.R. Stone et al., Phys. Rev. C76 (2007) at CERN-ISOLDE 2. Isomer de-excitation by Coulex: 68mCu beam (722 keV, 4 min. isomer) interacting with 120Sn I. Stefanescu et al., Phys. Rev. Lett. 98 (2007) at CERN-ISOLDE 3. Isomer discovery by laser spectroscopy 80mGa and 80gGa seen with laser spectroscopy (with no decay required) B. Cheal et al., Phys. Rev. C82 (2010) (R) at CERN-ISOLDE 4. Isomer discovery in a Penning trap 65mFe and 65gFe seen in a Penning trap (with no decay required) M. Block et al., Phys. Rev. Lett. 100 (2008) at NSCL 5. Longest-lived and shortest-lived ground states M2 + E2

3 shortest: 19Mg 4 ps, 2p decay [PRL99(2007)182501]
Issues from yesterday 1. Parity mixing in γ decay: 180mHf 8- isomer J.R. Stone et al., Phys. Rev. C76 (2007) at CERN-ISOLDE 2. Isomer de-excitation by Coulex: 68mCu beam (722 keV, 4 min. isomer) interacting with 120Sn I. Stefanescu et al., Phys. Rev. Lett. 98 (2007) at CERN-ISOLDE 3. Isomer discovery by laser spectroscopy 80mGa and 80gGa seen with laser spectroscopy (with no decay required) B. Cheal et al., Phys. Rev. C82 (2010) (R) at CERN-ISOLDE 4. Isomer discovery in a Penning trap 65mFe and 65gFe seen in a Penning trap (with no decay required) M. Block et al., Phys. Rev. Lett. 100 (2008) at NSCL 5. Longest-lived and shortest-lived ground states M2 + E2 longest: 128Te 7.2x1024 y, 2β- decay shortest: 19Mg 4 ps, 2p decay [PRL99(2007)182501]

4 Extreme isomers decay rates vary over at least 32 orders of magnitude
long half-life: Ta, 9–, 75 keV, >1016 y high spin/energy*: 212Rn, 38+, 13 MeV, 12 ns low energy: Th, 3/2+, 8 eV, ~10 h? p rich: Ag, 21+, 5.8 MeV, 300 ms n rich: Cd, 8+, MeV, 220 ns high mass: Ds, 10–, 1 MeV, 6 ms PRC 2006 PLB 2008 PRL 2007 Nature 2006 EPJA 2001 decay rates vary over at least 32 orders of magnitude * unbound to both p and n emission

5 isomer types energy K traps K β yrast line shape traps yrast traps I
lowest energy for a given spin I spin I(I+1) [Walker and Dracoulis, Physics World (Feb 1994) 39]

6 high-spin isomer types
seniority isomer K isomer E4 decay E3 decay 7h 31y 93Mo 178Hf yrast traps => long lived

7 high-spin isomer types
seniority isomer K isomer E4 decay E3 decay 7h 31y 93Mo 178Hf seniority isomer K isomer 190ns E1 decay 4s E2 decay 178Hf 92Mo

8 Isomers and the shell model
Low-lying isomers => single-particle spin differences => test of shell model (other non-isomeric single-particle states are in principle just as useful for testing the shell model, but only if they can be identified in the first place) This is just as true now, in regions of shell changes, as it was historically.

9 neutron h11/2 isomers (β decays)
Z = 48 isotopes figure from: Huck et al., Phys. Rev. C40 (1989) 1384

10 neutron h11/2 isomers Z = 48 isotopes Nilsson diagram 1.8 s 3.4 h
figure from: Huck et al., Phys. Rev. C40 (1989) 1384

11 neutron (h11/2)-2 10+ isomers (γ decays)
N = 80 isotones Valiente-Dobon et al., Phys. Rev. C69 (2004)

12 proton and neutron (g9/2)-2 8+ isomers 590 ns 480 ns 220 ns
Jungclaus et al., PRL99 (2007) 132501

13 212Rn 212Rn126 Highest spin isomer I = (38), 12 ns states above 86
triple neutron core excitations 212Rn 12.5 MeV I = (38), 12 ns 212Rn126 states above 5.4 MeV 204Hg(13C, 5n) 86 CAESAR at ANU 5.4 MeV

14 Segre chart with isomers
K isomers in deformed nuclei adapted from Walker and Dracoulis, Nature 399 (1999) 35

15 178W bands K isomers and rotational bands in a deformed nucleus
1999 K isomers and rotational bands in a deformed nucleus 178W bands 8.8 MeV 6.6 MeV data from GAMMASPHERE at Berkeley: 170Er(13C, 5n) 5.3 MeV 3.7 MeV Note: 175Hf holds the record for the highest spin/energy K isomer (see previous lecture)

16 Hf-178 new level scheme ~2Δ ~2Δ 4-quasiparticle isomer at 2.4 MeV
72 106 [Smith et al., Phys. Rev. C68 (2003) (R)]

17 Single-particle energies
178Hf has N=106, Z=72, β2~0.25 Single-particle energies 106 72 [F.R. Xu et al., Phys. Lett. B435 (1998) 257] Woods-Saxon potential

18 half-lives vs A multi-quasiparticle K isomers > 5ns 178Hf
• 2-, 3-qp 4-, 5-qp 6-, 7-qp 8-, 9-qp excludes 2-qp isomers in odd-odd nuclei Walker, AIP-CP819 (2006) 16

19 K isomers - structure deformed shell model - energies
- transition rates?

20 K-forbidden γ-ray transitions
collective I=R=8 degree of forbiddenness, ν = ΔK – λ λ=1 transition is 7-fold forbidden (ν = 7) symmetry I=K=8 axis non-collective angular momentum has both magnitude and direction!

21 transition-rate hindrance factors
Weisskopf hindrance degree of K forbiddenness reduced hindrance (hindrance per degree of K forbiddenness) contains the physics

22 Weisskopf transition rates

23 partial γ-ray half-life: T1/2
level isomer other branches 100-x-y % γ-ray branch x % electron branch y % γ T1/2 = T1/ /x level

24 178Hf Hf-178 new level scheme 72 4-quasiparticle isomer M4 E3 E5 E1
0.005% M4 E3 E5 495-keV gate E1 2-quasiparticle isomer 178Hf M2 72 data from the 8π spectrometer at TRIUMF [Smith et al., Phys. Rev. C68 (2003) (R)]

25 Hf-178 hindrances 178Hf K=8 K=16 E1 M2 E3 M4 E5

26 Löbner systematics Löbner, Phys. Lett. B26 (1968) 369
Löbner, Phys. Lett. B26 (1968) 369

27 Löbner systematics from the gradients:
for each additional degree of K forbiddenness, the hindrance increases by a factor of ~100 Löbner, Phys. Lett. B26 (1968) 369

28 2- and 3-qp E2 reduced hindrances
lower fν => more K mixing (Coriolis and/or γ deformation) Walker, J. Phys. G16 (1990) L233 Dracoulis et al., Phys. Rev. C71 (2005)

29 2- and 3-qp E2 reduced hindrances
increasing deformation lower fν => more K mixing (Coriolis and/or γ deformation) NpNn: product of valence nucleon numbers, e.g. 174Yb (+) has Z=70, Np=12; N=104, Nn=22 => NpNn=264 Walker, J. Phys. G16 (1990) L233

30 2- and 3-qp E2 reduced hindrances
171Tm Walker et al. Phys. Rev. C79 (2009) increasing deformation NpNn: product of valence nucleon numbers, e.g. 174Yb (+) has Z=70, Np=12; N=104, Nn=22 => NpNn=264

31 171Tm 1.7 μs 171Tm isomer ΔE = 11 keV (V=12 eV) Walker et al.
Phys. Rev. C79 (2009)

32 171Tm 1.7 μs 171Tm isomer chance near-degeneracy of two 19/2+ levels
ΔE = 11 keV (V=12 eV) 171Tm isomer chance near-degeneracy of two 19/2+ levels Walker et al. Phys. Rev. C79 (2009)

33 K-mixing mechanisms ■ chance near-degeneragies – hard to predict!
■ Coriolis mixing (rotational – orientation change) ■ γ tunnelling (vibrational – shape change) ■ level density (thermal – statistical) K R

34 K-mixing mechanisms ■ chance near-degeneragies – hard to predict!
■ Coriolis mixing (rotational – orientation change) ■ γ tunnelling (vibrational – shape change) ■ level density (thermal – statistical) larger deformation (NpNn) => less Coriolis mixing K R

35 f(nu) vs E(K)-E(R)/0.85 4-,5-,7-,9-qp isomers A~180 region
level-density dependence E2 and E3 transitions 179Ta (49/2) [Kondev] Walker et al., Phys. Lett. B408 (1997) 42; Acta Phys. Pol. 36 (2005) 1055 174Yb (14) [Dracoulis] 175Hf (57/2) [Kondev] increasing level density (+Δ= 0.9 for odd-mass)

36 Where next?

37 Where next? - need for quantitative theory
- compare with other mass regions - make and test predictions for exotic nuclei

38 2-qp E2 reduced hindrances even-even nuclides, Kπ = 6+, 8+, 10+ isomers
244Cm 162Dy: Swan et al., Phys. Rev. C83 (2011) 190W: Lane et al., Phys. Rev C82 (2010) (R) 134Ce increasing deformation fig. updated from Walker, Nucl. Phys. A834 (2010) 22c

39 170Dy: doubly mid-shell 170Dy ? E2 transitions Kπ = 6+ isomers 172Er ?
P.H. Regan et al., Phys. Rev. C65 (2002) A.K. Rath et al., Phys. Rev. C68 (2003) E2 transitions Kπ = 6+ isomers 172Er ? 174Yb predictions

40 K-forbidden γ-ray transitions
Summary K-forbidden γ-ray transitions fν dependence: NpNn (E2 transitions, 2-qp) Coriolis effects γ tunnelling level-density (multi-qp) chance near-degeneracy theory needed, but predictions possible n-rich predictions – long-lived isomers

41 K-forbidden γ-ray transitions
Summary K-forbidden γ-ray transitions fν dependence: NpNn (E2 transitions, 2-qp) Coriolis effects γ tunnelling level-density (multi-qp) chance near-degeneracy theory needed, but predictions possible n-rich predictions – long-lived isomers Other decay modes (p, n, α, fission): tomorrow’s lecture/seminar

42 “But you’ve no idea what a difference it makes,
mixing it with other things” Lewis Carroll, Through the Looking Glass (Macmillan and Co., London, 1872)

43 γ tunnelling γ = 0o γ = -60o γ = -120o potential energy surface
prolate γ = -60o oblate Narimatsu et al., Nucl. Phys. A601 (1996) 69 γ = -120o

44 tunnelling 174Yb (K=6) E2 γ-tunnelling description of K-isomer decay
A~180 region 174Yb (K=6) see Dracoulis et al. Phys. Rev. C71 (2005) isomer→gsb E2 transitions Chowdhury et al., Nucl. Phys. A485 (1988) 136


Download ppt "The excitation and decay of nuclear isomers"

Similar presentations


Ads by Google