Presentation is loading. Please wait.

Presentation is loading. Please wait.

ECMWF The ECMWF Radiation Transfer schemes 1 Photon path distribution method originally developed by Fouquart and Bonnel (1980). [see lecture notes for.

Similar presentations


Presentation on theme: "ECMWF The ECMWF Radiation Transfer schemes 1 Photon path distribution method originally developed by Fouquart and Bonnel (1980). [see lecture notes for."— Presentation transcript:

1 ECMWF The ECMWF Radiation Transfer schemes 1 Photon path distribution method originally developed by Fouquart and Bonnel (1980). [see lecture notes for full details] Vertical integration: with The ECMWF shortwave radiation schemes - 1 reflectance at the top and transmittance at the bottom of a layer

2 ECMWF The ECMWF Radiation Transfer schemes 2 Delta-Eddington method (Shettle and Weinman, 1970; Joseph et al., 1976) to compute from the total optical thickness, single scattering albedo, and asymmetry factor g, which account for the combined effect of cloud condensed water, aerosol, and molecular absorption The ECMWF shortwave radiation schemes - 2

3 ECMWF The ECMWF Radiation Transfer schemes 3 Laplace transform method to get the photon path equivalent gaseous absorber amounts from 2 sets of layer reflectances and transmittances, assuming successively a non-reflecting underlying medium ( ) then a reflecting one ( ) where are the layer reflectance and transmittance corresponding to a conservative scattering medium and k e is an absorption coefficient approximating the spectrally averaged transmission of the clear-sky atmosphere The ECMWF shortwave radiation schemes - 2

4 ECMWF The ECMWF Radiation Transfer schemes 4 The ECMWF shortwave radiation schemes - 3 Transmission functions for O 3, H 2 O, CO 2, N 2 O, CH 4 are fitted with Pade approximants from reference calculations

5 ECMWF The ECMWF Radiation Transfer schemes 5 SW6 vs. SW4 6 spectral intervals from 0.185 to 4  m Based on a line-by-line model of the transmission functions  LbL based on STRANSAC (Scott, 1974, Dubuisson et al., 1996)  modified to account for HITRAN 2000  H 2 O, CO 2, O 3, O 2, CH 4, CO, N 2 O  resolution 0.01 cm -1 from 2000 to 20000 cm -1, then resolution of the O3 continuum, i.e. 5 to 10 cm -1 UV CBA in 2 intervals, 0.185-0.25-0.4  m, visible in 1 interval, 0.4-0.69  m 4 spectral intervals from 0.25 to 4  m Based on statistical models of the transmission functions UV BA and visible in one interval from 0.25 to 0.69  m

6 ECMWF The ECMWF Radiation Transfer schemes 6 The new SW radiation scheme - 2 Comparison with a line-by-line model of the SW radiation transfer on standard cases shows an excellent agreement on the flux profiles Standard tropical atmosphere: full line = LbL dash line = SW6 surface Top of the atmosphere

7 ECMWF The ECMWF Radiation Transfer schemes 7 The new SW radiation scheme - 3 The new SW scheme SW6 is compared to the old SW4, and to results obtained from a different scheme linked to a different line-by-line model, RRTM Differences in tropospheric SW heating rates: A small impact is seen in the troposphere, related to a water vapour absorption including both a p- and e-type absorption

8 ECMWF The ECMWF Radiation Transfer schemes 8 The new SW radiation scheme - 4 Differences in stratospheric SW heating rates The main impact of a better representation of the gaseous absorption is found in the stratosphere, where the heating by O 3 is more properly distributed on the vertical.

9 ECMWF The ECMWF Radiation Transfer schemes 9 The new SW radiation scheme - 5 In these 1-D calculations, whatever the state of the atmosphere, clear-sky, overcast, or mixed, the surface downward flux from SW6 is always smaller than the one from SW4.

10 ECMWF The ECMWF Radiation Transfer schemes 10 The new SW radiation scheme - 6 Within the ECMWF forecast model, the effect of the new SW scheme is felt at the surface where it decreases the SW radiation available at the surface. In terms of temperature field, the effect is almost exclusively in the stratosphere, where it improves the agreement with climatologies: 270 K and more at the stratopause around 1 hPa

11 ECMWF The ECMWF Radiation Transfer schemes 11 RRTM vs. M91/G00 - 1 The ECMWF LW radiation schemes: RRTM_LW vs. M91/G00 00

12 ECMWF The ECMWF Radiation Transfer schemes 12 M91/G00 Morcrette, 1991, JGR, 96D, 9121-9132 Gregory et al., 2000, QJRMS, 126A, 1685-1710. Band-emissivity type of scheme, i.e., solves for a (N+1) 2 matrix of transmission functions Six spectral intervals  0-350 + 1450-1680 cm -1 970-1110 cm -1  500-800 cm -1 350-500 cm -1  800-970 cm -1 1250-1450 + 1880-2820 cm -1 mixed vertical quadrature:  2-point Gaussian for layers adjacent to level of computation  trapezoidal rule for distant layers

13 ECMWF The ECMWF Radiation Transfer schemes 13 M91/G00 - 2 Transmission functions represented by Pade approximants from transmission functions computed with Malkmus and Goody statistical models with the effective absorber amount Diffusivity factor Pressure-weighted amount of absorber

14 ECMWF The ECMWF Radiation Transfer schemes 14 M91/G00 - 3 Effective cloudiness  k abs,liq from Smith and Shi (1992), k abs,ice from Ebert and Curry (1992) Effect of clouds on LW fluxes following Washington and Williamson (1977). Formulation allows for maximum, maximum-random, or random cloud overlap.

15 ECMWF The ECMWF Radiation Transfer schemes 15 RRTM_LW Mlawer et al., 1997: JGR, 102D, 16663-16682 Morcrette et al., 1998: ECMWF Tech.Memo., 252 The use of the correlated-k method (mapping k -> g) allows radiative transfer to be performed as a monochromatic process R o is the radiance incoming to the layer, B(,T) the Planck function at wavenumber and temperature T t is the transmittance for the layer optical path t’ the transmittance at a point along the layer optical path Discretized over j (k, k+  k) intervals of width W j

16 ECMWF The ECMWF Radiation Transfer schemes 16 RRTM_LW vs. M91/G00 - 1 MLS profile

17 ECMWF The ECMWF Radiation Transfer schemes 17 RRTM_LW vs. M91/G00 - 2 Morcrette et al., 2001, ECMWF Newsletter, 91, 2-9. Due to the increased LW absorption, RRTM provides smaller OLR and larger surface downward LW radiation For clear-sky situations For overcast low- and high-level cloudiness

18 ECMWF The ECMWF Radiation Transfer schemes 18 RRTM vs. M91/G00 - 3 OLR derived from AVHRR from April 99 OLR from ECMWF model with RRTM Differences in OLR: RRTM-M91/G00

19 ECMWF The ECMWF Radiation Transfer schemes 19 RRTM_LW vs. M91/G00 - 4 Morcrette, 2002, J.Clim., 15, 1875-1892. Comparisons over April and May 1999 ARM-NSA 1 SURFRAD station ARM-TWP1 ARM-TWP2

20 ECMWF The ECMWF Radiation Transfer schemes 20 RRTM_LW vs. M91/G00 - 5 Objective scores: RRTM vs. M91/G00 New system with RRTM Old system with M91/G00

21 ECMWF The ECMWF Radiation Transfer schemes 21 RRTM vs. M91/G00 - 6 M91/G00 RRTM


Download ppt "ECMWF The ECMWF Radiation Transfer schemes 1 Photon path distribution method originally developed by Fouquart and Bonnel (1980). [see lecture notes for."

Similar presentations


Ads by Google