Presentation is loading. Please wait.

Presentation is loading. Please wait.

Projectile Motion Major Principles for All Circumstances Horizontal motion is constant velocity Vertical motion is constant downward acceleration a = g.

Similar presentations


Presentation on theme: "Projectile Motion Major Principles for All Circumstances Horizontal motion is constant velocity Vertical motion is constant downward acceleration a = g."— Presentation transcript:

1 Projectile Motion Major Principles for All Circumstances Horizontal motion is constant velocity Vertical motion is constant downward acceleration a = g = -9.8 m/s 2

2 Projectile Motion The Big Four + One More In x x = v x t In y y = v oy t + 1/2 gt 2 v y = v oy + gt v y 2 = v oy 2 + 2gy y = 1/2(v oy + v y )t Ties them together Time & Launch Angle

3 Projectile Motion Types of Projectile Problems Type A -Half of a Parabola Type B - Type C - Full Parabola - Symmetric Partial or Asymmetric Parabola

4 Type A - Half of a Parabola Projectile Motion In the vertical direction The object acts like a dropped object Initial vertical velocity is zero; v oy = 0

5 Type A - Half of a Parabola Projectile Motion To solve for time, often you will use... y = v oy t + 1/2 gt 2 since v oy = 0 y = 1/2 gt 2 t =  (2y/g) Therefore... WARNING: Be careful using shortcut formulas!!!!

6 Type A - Half of a Parabola Projectile Motion If the problem is reversed... Romeo throws a rock up to Juliet; hits window horizontally Because of symmetry, just solve the problem backwards, make v oy = 0

7 Projectile Motion Type B - Full Parabola Notice the ball lands back in the truck... only if the truck moves with constant velocity

8 Projectile Motion Type B - Full Parabola If you solve for the full parabola... The vertical displacement is zero; y = 0 The time is the total hang time

9 Projectile Motion Type B - Full Parabola If you solve for half the parabola... The vertical velocity at the peak is; v y = 0 The time is equal to half the hang time

10 Projectile Motion Type B - Full Parabola The Range Formula vovo WARNING: Use the triangle for velocities only!!!! v oy = v o sin  v x = v o cos 

11 Projectile Motion Type B - Full Parabola The Range Formula v x = v o cos  x = v x t x = (v o cos  )t v oy = v o sin 

12 Projectile Motion Type B - Full Parabola The Range Formula x = v x t v oy = v o sin  x = (v o cos  )t v y = v oy + gt -v oy = v oy + gt -2v oy = gt -(2v oy )/g = t v y = -v oy -(2v o sin  )/g = t

13 Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos  )t -(2v o sin  )/g = t x = (v o cos  )(-2v o sin  /g)

14 Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos  )t x = (v o cos  )(-2v o sin  /g)

15 Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos  )t x = (v o cos  )(-2v o sin  /g) x = -v o 2 (2sin  cos  )/g Trig Identity: 2sin  cos  = sin2  x = -v o 2 sin2  /g

16 Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos  )t x = (v o cos  )(-2v o sin  /g) x = -v o 2 (2sin  cos  )/g x = -v o 2 sin2  /g

17 Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos  )t x = (v o cos  )(-2v o sin  /g) x = -v o 2 (2sin  cos  )/g x = -v o 2 sin2  /g WARNING: Be careful using shortcut formulas!!!!

18 Optimum Angle of 45  Maximum range Projectile Motion Type B - Full Parabola Supplementary Angles Equal ranges

19 Projectile Motion Type C - Partial or Asymmetric Parabola Each problem is unique, so take your time and... Some problems can be treated as two Type A problems stick to your major principles from the beginning

20 Projectile Motion Type C - Partial or Asymmetric Parabola We don’t know time, but we must find out the height (y) of an object. Very Unique Equation y = v oy t + 1/2gt 2

21 Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 vovo v oy = v o sin  v x = v o cos  y = (v o sin  )t + 1/2gt 2

22 Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 vovo v oy = v o sin  v x = v o cos  y = (v o sin  )t + 1/2gt 2 x = v x t x = (v o cos  )t x/(v o cos  ) = t

23 Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 y = (v o sin  )t + 1/2gt 2 x/(v o cos  ) = t y = v o sin  (x/(v o cos  )) + 1/2g(x/(v o cos  )) 2

24 Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 y = (v o sin  )t + 1/2gt 2 y = v o sin  (x/(v o cos  )) + 1/2g(x/(v o cos  )) 2 y = x(sin  /cos  ) + 1/2g(x 2 /(v o 2 cos 2  )) y = xtan  + gx 2 /(2v o 2 cos 2  )

25 Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 y = (v o sin  )t + 1/2gt 2 y = v o sin  (x/(v o cos  )) + 1/2g(x/(v o cos  )) 2 y = x(sin  /cos  ) + 1/2g(x 2 /(v o 2 cos 2  )) y = xtan  + gx 2 /(2v o 2 cos 2  ) Works for all types of problems, !! Most useful with Type C!!


Download ppt "Projectile Motion Major Principles for All Circumstances Horizontal motion is constant velocity Vertical motion is constant downward acceleration a = g."

Similar presentations


Ads by Google