Presentation is loading. Please wait.

Presentation is loading. Please wait.

V.Tisserand, LAPP-Annecy (IN 2 P 3 /France), on behalf of the B A B AR collaboration. Aachen (Germany), July 17 th -23 rd 2003. Charmed B hadrons with.

Similar presentations


Presentation on theme: "V.Tisserand, LAPP-Annecy (IN 2 P 3 /France), on behalf of the B A B AR collaboration. Aachen (Germany), July 17 th -23 rd 2003. Charmed B hadrons with."— Presentation transcript:

1 V.Tisserand, LAPP-Annecy (IN 2 P 3 /France), on behalf of the B A B AR collaboration. Aachen (Germany), July 17 th -23 rd 2003. Charmed B hadrons with B A B AR   Testing factorization with color-suppression: B ̅ 0  D ( * )0 [  0, , ,  ’ ]   Modes for reaching  in the future (CP violation): B -  D 0 (CP) K - and D* 0 K* -   Understanding charm multiplicity: B  D ̅ ( * ) D ( * ) K

2 Testing factorization with color-suppression D ( * )+ -,--,- c dd b dd d uu B0B0 Color-allowed: B0B0 0,,,’,00,,,’,0 D ( * )0 c uu d dd b dd Color-suppressed:  Naïve factorization model: h light meson and D ( * ) meson hadronize independently and predicts: B (  B 0  D ( * )0 h 0 )  ( 0.3  1.7 )  10 -4 B  ( 3  8 )  10 -3   B  (1/3)²  10 - 4 A (  B 0  D ( * ) + h - )  a 1 A (  B 0  D ( * )0 h 0 )  a 2 a i universal QCD Wilson coefficients: |a 2 /a 1 |  ( 0.2  0.3 )/ 1.1~ 0.25  Factorization fails if final state interactions (FSI) produce important constructive strong interferences and re-scattering A (color-suppressed)  (a 2 and a 1 ), see isospin amplitudes triangle (eg.):

3   signal yields and combinatorial bckgd from m ES unbinned ML fit.   peaking bckgd from MC. Color-suppressed  B 0  D ( * )0 h 0 : signal events yields (1) 88.8  10 6 BB ̅ pairs 81.9 /fb Signatures: D* 0  D 0  0, D 0  K -  +, K -  +  0, and K -  +  -  +. m ES ~m B = beam energy substituted mass D00D00 D* 0  0 487  34 sig. e vts 88.4  12.0 sig.e vts D 0  (   ) 173  20 sig.e vts D 0  (    ) 74.4  11.6 sig.e vts D 0  (   ) 198  18 sig. e vts

4 D 0  ’ (  ) 26.6  6.0 sig.e vts D* 0  70.4  12.1 sig. e vts D* 0  ’ (  ) 4.0  2.2 sig.e vts D* 0  (  ) 39.5  7.2 sig.e vts  New modes not measured so far by Belle’02 or CLEO’02, nor by B A B AR ’02 ! 88.8  10 6 BB ̅ pairs ~81.9 /fb Color-suppressed  B 0  D ( * )0 h 0 : signal events yields (2)

5 88.8  10 6 BB ̅ pairs 81.9 /fb B for Color-suppressed B 0  D ( * )0 [  0, , ,  ’] 14.3 7.6 8.9 6.2 11.3 5.5 10.7 6.1 6.3 3.0 D 0  0 D* 0  0 D 0  D* 0  D 0  D* 0  D 0  ’ D* 0  ’ (   ) (    ) ( combination ) 2.92  0.20  0.33 2.90  0.38  0.48 2.37  0.26  0.27 2.79  0.43  0.41 2.49  0.22  0.30 2.63  0.44  0.42 2.96  0.26  0.40 4.22  0.68  0.88 1.68  0.38  0.22 1.29  0.71  0.19 < 2.6 (90 % CL)  B 0  B (  10 -4 ) (  stat  syst) S/  S+B   B much larger than what naïve factorization predicts:  2.5  7.5 (Neubert and Stech’98).   better agreement with models including FSIs (Chua et al.’02).    New modes not yet in PDG !   7 color-suppressed modes precisely meas. with statistic. signif: > 5.5  and 1 with 3  Preliminary results

6  extract  CKM from interference of charged B decaying to common final states: ( b  c ) and ( b  u ) * Motivations for B -  D ( * )0 (CP) K ( * )- * Atwood, Dunietz, Gronau, Jang, Ko, London, Rosner, Soni, Wyler … V us V* cs V* us V cb V ub (=A 3      e -i  ) B-B- B-B- D ( * )0  D ( * )0 K ( * )-  CP violation effect expected to be small as the amplitude is: Cabibbo-suppressed: V ub /(V cb  V* us )~ 35% Color-suppressed: |a 2 /a 1 |~ 0.25, but maybe not so much !  it’s a long way until  !: statistically very challenging (>500/fb ?)

7 61  10 6 BB ̅ pairs 56 /fb So approx.: B (B - → D 0 K - ) = 4.4  10 -4  R reduces the syst. errors (weighted result over 3 D 0 modes) * (s  d):  sin²(  c ) R = (8.31  0.35  0.20)% * B ( B -  D 0 (  K ,K  0,K 3  ) K - ) Preliminary results  Signal extracted from an unbinned ML fit to:  E, m ES and  DIRC (K/  ID)  Energy difference with Kaon mass hypothesis for fast track: K-+K-+ no PID on K - K  E K (GeV)  B-D0 h-B-D0 h- K-+-+K-+-+ K-+K-+ Tight PID on K - K-+0K-+0  E K (GeV)

8 D 0 CP   +  - with tight PID: K - *  E K (GeV) 88.8  10 6 BB ̅ pairs 81.8 /fb *  and D 0 (  K  )  resonant bckgds: mD 0 instead of m ES in the ML fit. D 0 CP  K + K - with tight PID: K - B -  D 0 CP=+1 (  K - K +,  +  - ) K -  look for direct CP violation where the D 0 decays to CP eigenstates (B +  B - asymmetry ?):  direct CPV not seen yet ! =(0.07  0.17  0.06) A cp = = (8.8  1.6  0.5)% Preliminary results

9 B ( B -  D* 0 K* - ) and polarization 85.9  10 6 BB ̅ pairs 79.1 /fb  Vector-Vector decay: MC acceptance very sensitive to the longitudinal polarization fraction, our measurement :  L /  = (0.86  0.06 (stat)  0.03 (syst) )  predicted by models based on factorization and HQET (see CLEO hep-exp0301028) Signatures: D* 0 (  D 0  0,D 0  ), K* - (  K 0 s  - ), and D 0 (  K -  +,K -  +  0,K 3  ).  Signal PDF and MC eff’cy calibrated with D* 0  - high purity ctrl samp. (~ 50 /fb  4500 evts) All D* 0 decays 121  15 sig.evts ( 6.8  3.4 peaking bckgd) m ES (GeV/c²) B ( B -  D* 0 K* - ) = (8.0  1.0 (stat)  1.2 (syst) )  10 -4 * * (s  d):  sin²(  c ). B ( B -  D* 0  - ) Preliminary results

10 The B (semi-lepto.)/n C puzzle in B decays B (semi-lepto.) %  Inclusive measurement Exclusive measurement Theory (  10.6  10.9 %: ALEPH, CLEO, B A B AR … ) nCnC   Theory is unable to describe: low n c value and low B (semi-lepto.). (eg.: Bigi et al ’94, Neubert and Sachrajda’97)   n c : charm multiplicity in B decays  Inclusive: LEP+SLD+wrong sign D CLEO ’ 98 : B (B  DX) WS =( 7.9 ± 2.2 )%   2 experimental methods: Exclusive:  B Charm hadrons includes hadronization of b  c c ̅ s that has been supposed to be dominated by B  D s ( * ) X decay: not enough !

11 understanding hadronization of b  c c ̅ s with B  D ̅ (*) D ( * ) K (1)   B  D ̅ (*) D ( * ) K can significantly contribute to B ( b  c c ̅ s ) and to wrong sign D ( * ) ! (Buchalla, Dunietz, and Yamamoto’95)   22 exclusive modes: some already reco’ed by ALEPH, CLEO, Belle, and BABAR. external W B B wrong sign D(*)D(*) D(*)D(*) D(*)D(*) D(*)D(*) K K (+) interference internal W

12 82.3  10 6 BB ̅ pairs 75.9 /fb  ( 3.9  0.2 (stat)  0.6 (stat)) %  very precise  CLEO ’ 98 (ws D): B (B  DX)=( 7.9 ± 2.2 )%  not all wrong sign Ds B (B 0  D ̅ (*) D ( * ) K )=( 4.3  0.3 (stat)  0.6 (syst) )% B (B +  D ̅ (*) D ( * ) K )=( 3.5  0.3 (stat)  0.5 (syst) )% hep-ex/ 0305003 submitted to PRD b  c c ̅ s with B  D ̅ (*) D ( * ) K (2)  E (GeV) m ES (GeV/c²) Side-band B0B0 B+B+ All the 22 possible modes studied: 11 sub-decay modes with > 4  823  57 970  65

13 not really significant yet  UL @ 90% CL from individual D ̅ (*) modes on B (D ̅ (*) D (*) K  D s1,2 ): 3-12% s s s s P-waves: L=1, j s =3/2 Narrow states  J P =1 + : D s1 ( 2536 ) +  D* 0 K +  J P =2 + : D s2 ( 2573 ) +  D 0 K + * fixed in the fit from cc ̅ data: 18/fb  m=m(D ( * )0 K + )-m(D ( * )0 ) (GeV/c²) B  D ̅ (*) (D s1 ( 2536 ) +  D* 0 K + ) B  D ̅ (*) (D s2 ( 2573 ) +  D 0 K + ) (764  50) B  D ̅ (*) D* 0 K + cands. used (  m= 527.9,  Gauss = 3.5 ) * MeV/c² (604  54) B  D ̅ (*) D 0 K + cands. used (  m= 708,  Gauss = 6 ) * MeV/c² B  D ̅ (*) D ( * ) K intermediate D** s states: D s (J=1,2) ( 2536,2573 ) +

14  Broad D sJ L=1, j s =1/2 searched in D ̅ (*) D ( * ) K decays.  assume (broad: few 100 MeV): mass D sJ > or  mass (D ( * ) + K) Intermediate broad D** s states D s(J=0,1) (??) use high rate/purity B 0  D *- D *0 K + m²(D* 0 K + ) (GeV²/c 4 ) DATA m ² (D* - D* 0 ) (GeV²/c 4 ) MC phase space model  Dalitz plot: DATA /MC phase space large density at low values of m²(D* 0 K + ). m ES (GeV/c²)  But also: recent discoveries on narrow D* s0 +(2317) and D* s1 +(2463) below D(*)K mass threshold ! ( BABAR, CLEO, and Belle).

15 ConclusionsConclusions   New precise B measurements for  B 0  D ( * )0 [  0, , ,  ’ ] Color-suppressed decays in the range: ( 1.3  4.3 )  10 -4.   On the road to  measurement: D 0 K - : R(K/  ) ~ 8  9 % and no direct CPV found in D 0 ( ,KK) CP=+1 modes. D* 0 K* - : very precise B = (8.0  1.0 (stat)  1.2 (syst) )  10 -4 measurement and fraction of longit. polariz.:  L /  ~ 90 %.   n C in B decays + complete B  D ̅ (*) D ( * ) K study:  1/3  B ( B  D  s X ) and explains ~1/2 inclusive wrong signs D (need a more precise measurement there). searched for intermediate L=1 broad and narrow D s ** states.


Download ppt "V.Tisserand, LAPP-Annecy (IN 2 P 3 /France), on behalf of the B A B AR collaboration. Aachen (Germany), July 17 th -23 rd 2003. Charmed B hadrons with."

Similar presentations


Ads by Google