Presentation is loading. Please wait.

Presentation is loading. Please wait.

Future Physics at EURISOL Peter Butler. Physics requirements 5-20 MeV/u 1-5 MeV/u 150 MeV/u.

Similar presentations


Presentation on theme: "Future Physics at EURISOL Peter Butler. Physics requirements 5-20 MeV/u 1-5 MeV/u 150 MeV/u."— Presentation transcript:

1 Future Physics at EURISOL Peter Butler

2 Physics requirements 5-20 MeV/u 1-5 MeV/u 150 MeV/u

3 “BRAD-WITEK PLOT”, circa 1997

4 Physics1-20 MeV/u150 MeV/u Exotic collectivityMultiple excitation Nuclear shape Giant collective modes Very exotic nuclei Shell evolutionParticle, hole studiesHole studies for lighter nuclei np-pairing, nn correlations d transfer to T=0, T=1 2n transfer Correlations from knock- out reactions Isospin mixingPrecise B(E2) valuesEnergy levels Halo nucleiStudy of resonances E1 response by (p,p’) Mass radii Momentum distributions Nucleosynthesis energy generation Direct and surrogate s.p. structure Coulomb dissociation, masses, r-process path Equation of stateIsospin dependence Fundamental interactions Beyond standard model beta-beamsNeutrino interactions SCOPE OF EURISOL H. Fynbo Tuesday pm F. Gulminelli Tuesday pm A. Goergen Tuesday pm S. Lenzi Tuesday pm K. Sonnabend Tuesday pm N. Severijns Tuesday pm R. Page Tuesday pm B. Balantekin Tuesday pm

5 Peter Butler World ISOL accelerated beams FACILITYDRIVERPOWERUSER BEAMS ACCELERATED ENERGY LOUVAINE- LA-NEUVE (BELGIUM) 1989 30 MeV protons 6 kW 6 He, 7 Be, 10,11 C, 13 N, 15 O, 18 F, 18,19 Ne, 35 Ar 10 MeV/u cyclotron HRIBF Oak Ridge (USA) 1997 100 MeV p, d,  (-ve ion source) 1 kW 7 Be, 17,18 F, 69 As, 76-79 Cu, 67,83-85 Ga, 78,82-86 Ge, 69 As, 83,84 Se, 92 Sr, 117,118 Ag, 126,128,132-136 Sn, 129 Sb, 129,132,134,136 Te 2 - 10 MeV/u tandem ISAC TRIUMF (CANADA) 2000 500 MeV protons 50 kW 8,9,11 Li, 11 Be, 18 F, 20-22, 24-29 Na, 23 Mg, 26 Al 1.5 - 6 MeV/u linac SPIRAL GANIL (FRANCE) 2001 100 MeV/u heavy ions 6 kW 6,8 He, 14,15,19-21 O, 18 F, 17-19,23-26 Ne, 33-35, 44,46 Ar, 74-77 Kr 2 - 25 MeV/u cyclotron REX ISOLDE (CERN) 2001 1.4 GeV protons 3 kW 8,9,11 Li, 10-12 Be, 10 C, 17 F, 24-29 Na, 28-32 Mg, 61,62 Mn, 61 Fe, 68 Ni, 67-71,73 Cu, 74,76,78,80 Zn, 70 Se, 88,92 Kr, 96 Sr, 108 In, 106,108,110 Sn, 122,124,126 Cd, 138,140,142,144 Xe, 140,142,148 Ba, 148 Pm, 153 Sm, 156 Eu, 182,184,186,188 Hg, 202,204 Rn 0.3 - 3 MeV/u linac

6 ISOL beams – direct target ~ 65 elements > 700 nuclides shell structure n-p pairing shape co- existence octupoles shell structure rp- process SHE x10 3-4 particles /s (EURISOL) r-process halo nuclei

7 Nuclear shapes I Skyrme HF Moreno et al. PRC 73 (2006) 054302 Yoshida and Takigawa PRC 55 (1997)1255

8 Strongly-coupled matrix elements Band mixing Sign, magnitude of deformation Nuclear shapes II Coulomb Excitation

9 74 Kr 4.7 MeV/u beam on radioactive target4.7 MeV/u radioactive beam - SPIRAL 3 MeV/u radioactive beam - REX See A. Goergen Tuesday pm Wollersheim et al. Nucl. Phys. A556 (1993) 261 Clément et al. Phys. Rev C75 (2007) 054313 Bree, Petts et al. Hasselgren and Cline Proc. Erice conf. (1980) p.89 Nuclear shapes III Coulomb Excitation

10 Coulomb excitation populates odd and even-even Radon and Radium with N~134 Octupole shapes and the Standard Model I

11 223 Rn or 225 Ra? Tests of CP invariance in hadronic sector from static Electric Dipole Moment (EDM) of atom (best limits so far from 199 Hg on _ ~  QCD d d C T C S  q SUSY  Higgs  LR ) Expect enhancement (by 10 2 ) of EDM in octupole radioactive nuclei, e.g. 223 Rn, 225 Ra See also N. Severijns Tuesday pm See, e.g. Dobaczewski and Engel Phys. Rev. Lett. 94 (2005) 232502 Schiff moment parity doublet octupole deformation Octupole shapes and the Standard Model II

12 Evolution of Shell Structure I Otsuka et al. Phys Rev Lett 95 (2005) 232502

13 Expect turnaround in trend, if tensor force drives changes, for higher Z. Test with transfer using 132 Sn, 134 Te, 146 Gd, 148 Dy, 150 Er Evolution of Shell Structure II Transfer reaction, e.g. (d,p), measurements locate single-neutron particle states outside inert core. also allows testing outside N=126 using beams: 206 Hg, ( 210 Po), 212 Rn and 214 Ra See also S. Lenzi Tuesday pm Kay et al. Phys. Lett. B658 (2008) 216

14 HELIOS EMMA VAMOS See also R. Page Tuesday pm

15 50 pnA 92 Kr + 164 Dy → 254 No 0.5 pnA 94 Kr + 164 Dy → 256 No 50 pnA 92 Kr + 170 Er → 260 Rf (  ~ 10nb) 251 Md 248, 253 No Deformed SHE region I 20 pnA 48 Ca  ~ 1  b Herzberg & Greenlees Prog. Part Nucl. Phys. 61 (2008) 674 48 Ca + Hg, Tl, Pb, Bi  ~ 100nb - 2  b

16 Egido & Robledo PRL 85 1198 92 Kr + 164 Dy  256 No * E x = 24 MeV Deformed SHE region II

17 Absolute σ(T=0) and σ(T=1) σ(T=0) / σ(T=1) After Machiavelli Neutron-proton pairing I T=1 J=0 T=0 J=1

18 5x10 5 /s 56 Ni( 3 He, p) 58 Cu 10 5 /s 72 Kr( 3 He, p) 74 Rb 44 Ti (Machiavelli et al) Neutron-proton pairing II single particle super- fluid See also S. Lenzi Tuesday pm  (T=1) /  (T=0)

19 Dominated by (p,  ) and ( ,p) reactions direct (p,  ) or ( 3 He,d) as surrogate of (p,  ) (p,  ) as inverse of ( ,p) X-ray bursts (rp-process) Dominated by (n,  ) reactions - r-process pathway largely unknown -understanding of shell evolution important (d,p) as surrogate of (n,  ) measure global properties such as mass and lifetime Supernovae (r-process) Nuclear Astrophysics See K. Sonnabend Tuesday pm

20 Secondary fragmentation of 132 Sn beam See J. Benlliure Tuesday am D. Loureiro et al. Zakopane proceedings (2008)

21 Expected reach of EURISOL fragmentation heaviest stable 115 116 109 110 103 104 New Pd 125 r-process & drip-line Karlsruher Nulidkarte 2006 1 10 -2 10 -4 10 -8 cold fission N=82 1 10 -2 10 -5 10 -7 10 -9 COFRA GSI present: 10 3 /sFAIR: 10 8 /sEURISOL: 10 12 /s

22 Physics from next generation European ISOL RIB facilities

23 2009 2014 2019 2024 LP-SPLMMW-SPL 200 kW100 MeV/u EUROPEAN ISOL ROADMAP

24 FINIS

25 HIE-ISOLDE will allow studies of reactions crucial for understanding profile of X-ray bursts in binary systems  critical reactions are (α,p) reactions on proton-rich nuclei

26 Z  IGNITION REACTIONS NOVA, X-RAY Bursts,Type I SN rp process

27 driver accelerator thin targethigh-temperature thick target fragment separator experiment ion source mass separator storage ring In-Flight (e.g.FAIR)ISOL (e.g. HIE-ISOLDE) heavy ions protons post accelerator GeV/u (  s) cooling to MeV/u (s) meV to 10 MeV/u (ms to several s) IF versus ISOL (PS- Booster 1.4 GeV)

28 European Roadmap for RIB facilities 70 kW direct target 200 kW fission conv.target 100 MeV/u fragments Qu. 5,12 2008 2013 2018 2023

29 Restricted to axial symmetry : no K=2 states B(E2) values e 2 fm 4 Shape coexistence in mean-field models: Skyrme M. Bender, P. Bonche and P.H. Heenen Phys Rev C74 (2006) 024312 HFB+GCM method Skyrme SLy6 force density dependent pairing interaction

30 Shape coexistence in mean-field models: Gogny J-P. Delaroche et al. Axial and triaxial degrees of freedom HFB+GCM with Gaussian overlap approximation Gogny D1S force B(E2) values e 2 fm 4

31 EURISOL yields FAIR:

32 Qu.6 120 MeV/u radioactive beam 74 Kr ISOL: detailed spectroscopic information In-flight (NuSTAR-HISPEC): single step excitation farther from stability 4.7 MeV/u beam on radioactive target4.7 MeV/u radioactive beam

33  NuSTAR provides beams at 200 MeV/u  Cannot measure particle configurations at these energies  Knockout reactions measure hole states  Large degree of mixing for hole states  Assignment for high l –values uncertain Qu.6 Hole states ( 3 He,  10 MeV/u) Particle states ( , 3 He 12.5 MeV/u)


Download ppt "Future Physics at EURISOL Peter Butler. Physics requirements 5-20 MeV/u 1-5 MeV/u 150 MeV/u."

Similar presentations


Ads by Google