Presentation is loading. Please wait.

Presentation is loading. Please wait.

PROJECT SELECTION RIGHT TOOLS, RIGHT TIME, RIGHT PROJECT Presented by Joe Ririe, PE PAVEMENT ENGINEERING INC. September 9, 2015.

Similar presentations


Presentation on theme: "PROJECT SELECTION RIGHT TOOLS, RIGHT TIME, RIGHT PROJECT Presented by Joe Ririe, PE PAVEMENT ENGINEERING INC. September 9, 2015."— Presentation transcript:

1 PROJECT SELECTION RIGHT TOOLS, RIGHT TIME, RIGHT PROJECT Presented by Joe Ririe, PE PAVEMENT ENGINEERING INC. September 9, 2015

2 Pavement basics Pavement preservation principles Project selection Pavement evaluation and testing Cost analysis and life cycle cost benefits Quality control and quality assurance PRESENTATION GOALS

3 PAVEMENT BASICS

4 Pavement Design Loading ESALS = Traffic Index or TI PAVEMENT BASICS Soils (R-value) GE = 0.0032 (TI)(100-R)

5 Pavement Deterioration Cycle PAVEMENT BASICS

6 Asphalt concrete deteriorates in two ways: Pavement Deterioration Oxidizing effects of sun and water Fatigue from heavy wheel loads PAVEMENT BASICS

7 The Impact of Sun and Water PAVEMENT BASICS

8 The Impact of Heavy Loads PAVEMENT BASICS

9 What is a Traffic Index? The projected equivalent single axle loading that a pavement will experience over its design life PAVEMENT BASICS

10 ESAL = (Axle Wt / 18,000 lbs) 4.2 Equivalent Single Axle Load PAVEMENT BASICS

11 Traffic Index vs. ESALs PAVEMENT BASICS

12 Alligator cracking Block cracking Distortions Longitudinal / transverse cracking Patches / utility cuts Rutting / depressions Weathering / raveling Common Pavement Distresses PAVEMENT BASICS

13 Block Cracking Alligator Cracking Transverse or Longitudinal Cracking Weathering or Raveling Common Pavement Distresses PAVEMENT BASICS

14 PAVEMENT PRESERVATION PRINCIPLES

15 Applying the RIGHT TREATMENT to the RIGHT PAVEMENT at the RIGHT TIME using the RIGHT MATERIALS PAVEMENT PRESERVATION PRINCIPLES

16 Pavement Preservation Timing PAVEMENT PRESERVATION PRINCIPLES

17 Best-First “Top Down” Management: focuses maintenance and rehabilitation on the best streets in the system. Interim procedure. Worst-First “Bottom Up” Management: focuses maintenance and rehabilitation on the worst streets in the system. Interim procedure. Critical-Point Management: focuses maintenance and rehabilitation on streets above rather than below a critical PCI. Most economical in the long run. Good Pavement Management PAVEMENT PRESERVATION PRINCIPLES

18 Pavement Condition vs. Maintenance / Rehabilitation Cost PAVEMENT PRESERVATION PRINCIPLES

19 Pavement Condition vs. Maintenance / Rehabilitation Cost PAVEMENT PRESERVATION PRINCIPLES

20 PROJECT SELECTION

21 Time of year Proximity to schools Day or night Traffic control needs Project Timing

22 Selecting the Right Streets PROJECT SELECTION PMS data Multi-year plan Visual conditions Grouping streets Public input Staff input Budget Utility coordination Grants Drainage ADA

23 Selecting the Right Treatment Visually dividing your street list Project Street ListMaintenance StreetsRehabilitation Streets Environmental determination Extent of loading failures Extent of ADA improvements Physical testing to determine structural adequacy If adequate, consider maintenance option PROJECT SELECTION

24 PAVEMENT EVALUATION AND TESTING

25 Rehabilitation Streets Design controlled by Reflective Cracking Structural Adequacy

26 Deflection Testing and Coring PAVEMENT EVALUATION AND TESTING

27 Deflection Testing and Coring PAVEMENT EVALUATION AND TESTING

28 Deflection Testing and Coring PAVEMENT EVALUATION AND TESTING

29 Deflection Testing and Coring PAVEMENT EVALUATION AND TESTING

30   N Deflection Testing and Coring PAVEMENT EVALUATION AND TESTING

31 Deflection Testing and Coring PAVEMENT EVALUATION AND TESTING

32 Deflection Testing and Coring PAVEMENT EVALUATION AND TESTING

33 Resistance R-Value Testing PAVEMENT EVALUATION AND TESTING

34 R-Value Design PAVEMENT EVALUATION AND TESTING

35 Design Considerations Previous overlays / existing crown Road improvements Shallow utilities PAVEMENT EVALUATION AND TESTING

36 Design Considerations for Sustainable Options Cold-in-place recycling (CIR) Pulverization and resurfacing / full-depth reclamation (FDR) Milling and resurfacing requirements PAVEMENT EVALUATION AND TESTING

37 Cold In-place Recycling Pavement must be structurally adequate. Pavement must have a minimum HMA layer thickness. Pavement must have a minimum existing base of 10 inches if R-value is less than 30. CIR depth cannot extend to base layer. Why? 1.75 to 2.50-inch cap is not sufficient if a pavement is structurally deficient (may not meet HMA design). A minimum depth ensures good CIR layer (3-4 inches). A minimum base thickness ensures heavy equipment doesn’t destabilize the grade.

38 Pulverization and Resurfacing/FDR PAVEMENT EVALUATION AND TESTING The preferred Traffic Index (TI) should be less than 7.0. Pavement must have a minimum aggregate base of 12 inches or an R-value less than 30. Pavement must have a minimum aggregate base of 9 inches or an R-value greater than 30. Check crown. Why? Typical build-up is not feasible over 2 to 3 inches unless there are no vertical constraints. Pulverizing, grading and compacting will destabilize a grade if the R-value and corresponding base thickness do not meet minimums. The intent of pulverizing is to create a new aggregate base section. Generally, limiting the off-haul of the pulverized base is important to ensure a sufficient structural section.

39 Milling and Resurfacing PAVEMENT EVALUATION AND TESTING Pavement must be structurally adequate or only slightly deficient. Pavement must have a minimum existing HMA depth of 5 inches. Why? Milling reduces the in-place structural capacity and requires some replacement value. If the pavement is structurally deficient, the mill depth typically becomes excessive. A minimum layer thickness is necessary to ensure milling equipment and loaded trucks do not break through the existing HMA.

40 COST ANALYSIS LIFE CYCLE COST ANALYSIS (LCCA)

41 COST ANALYSIS

42 Develop and Evaluate Recommendations Short-term pavement rehabilitation options These options are not available for this street because of structural deficiencies and/or pavement cracking condition. COST ANALYSIS

43 Develop and Evaluate Recommendations Long-term pavement rehabilitation options Overlay Option: RHMA For option 1, we recommend 4-inch digouts for base failures, placing a 1/2 inch HMA leveling course and a 1-3/4 inch RHMA overlay. Estimated Cost: $241,000Estimated Life Expectancy: 10-12 Years Overlay Option: RHMA For option 1, we recommend 4-inch digouts for base failures, placing a 1/2 inch HMA leveling course and a 1-3/4 inch RHMA overlay. Estimated Cost: $241,000Estimated Life Expectancy: 10-12 Years

44 COST ANALYSIS Develop and Evaluate Recommendations Long-term pavement rehabilitation options Overlay Option: HMA An overlay using HMA is not recommended because the 3-3/4 inch structural requirement exceeds the 3-1/2 inch maximum overlay that is considered feasible to meet geometric constraints. Overlay Option: HMA An overlay using HMA is not recommended because the 3-3/4 inch structural requirement exceeds the 3-1/2 inch maximum overlay that is considered feasible to meet geometric constraints.

45 COST ANALYSIS Develop and Evaluate Recommendations Long-term pavement maintenance options Recycle and Mill and Replace Options These options are not available for this street because of the structural deficiencies and thin pavement layer. Recycle and Mill and Replace Options These options are not available for this street because of the structural deficiencies and thin pavement layer.

46 COST ANALYSIS Develop and Evaluate Recommendations Long-term pavement rehabilitation options Reconstruction Option 1 For option 1, we recommend removing the pavement to a depth of 10-1/2 inches and placing 10-1/2 inches of new HMA. The HMA should be placed in 4 lifts. Estimated Cost: $631,000 Estimated Life Expectancy: 20 Years Reconstruction Option 1 For option 1, we recommend removing the pavement to a depth of 10-1/2 inches and placing 10-1/2 inches of new HMA. The HMA should be placed in 4 lifts. Estimated Cost: $631,000 Estimated Life Expectancy: 20 Years

47 COST ANALYSIS Develop and Evaluate Recommendations Long-term pavement rehabilitation options Reconstruction Option 2 For option 2, we recommend removing 4 inches of the existing structure, lime treating the native soil and aggregate base to a depth of 13 inches and placing 4 inches of new HMA in 2 lifts. Estimated Cost: $292,000 Estimated Life Expectancy: 20 Years Reconstruction Option 2 For option 2, we recommend removing 4 inches of the existing structure, lime treating the native soil and aggregate base to a depth of 13 inches and placing 4 inches of new HMA in 2 lifts. Estimated Cost: $292,000 Estimated Life Expectancy: 20 Years

48 Develop and Evaluate Recommendations COST ANALYSIS

49 QUALITY CONTROL AND QUALITY ASSURANCE

50 QC / QA Vheem Mix vs. Superpave Mix

51 QC / QA Caltrans Section 39 (2010) Method Standard QC/QA

52 Mix Design Submittals JMF – 3511, 3512 and 3513 Production start-up

53 QC / QA Importance of Compaction

54 QUESTIONS?


Download ppt "PROJECT SELECTION RIGHT TOOLS, RIGHT TIME, RIGHT PROJECT Presented by Joe Ririe, PE PAVEMENT ENGINEERING INC. September 9, 2015."

Similar presentations


Ads by Google